
Beginning
Laravel

Build Websites with Laravel 5.8
—
Second Edition
—
Sanjib Sinha

www.allitebooks.com

http://www.allitebooks.org

Sanjib Sinha

Beginning Laravel
Build Websites with Laravel 5.8

Second Edition

www.allitebooks.com

http://www.allitebooks.org

Beginning Laravel

ISBN-13 (pbk): 978-1-4842-4990-1				 ISBN-13 (electronic): 978-1-4842-4991-8
https://doi.org/10.1007/978-1-4842-4991-8

Copyright © 2019 by Sanjib Sinha

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: Mathew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4990-1. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Sanjib Sinha
Howrah, West Bengal, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4991-8
http://www.allitebooks.org

This book is dedicated to Dr. Baidyanath Haldar,
who dedicated his life to eradicating leprosy in India.

You taught me to appreciate the value of lifelong learning.

Sir, I truly miss you.

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: Introduction to Laravel��� 1

Laravel’s Flexibility��� 1

How Laravel Works�� 3

What Is the MVC Pattern?��� 7

How the MVC Pattern Works��� 9

Chapter 2: Setting Up Your Environment��� 11

Composer��� 11

Installing Composer Globally�� 12

Installing Laravel Globally��� 13

Installing Laravel Locally with Composer��� 14

Introduction to Homestead, Valet, and Forge��� 16

Forge: Painless PHP Servers�� 18

Installing VirtualBox and Vagrant�� 19

Installing Homestead Using Vagrant��� 25

Configuring Homestead�� 27

Shared Folders and Homestead��� 28

Launching the Vagrant Box��� 31

Homestead and MySQL�� 34

How to Create a New Laravel Project�� 37

Table of Contents
About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 3: Routing, Controllers, Templates, and Views��� 41

Route Definitions�� 41

How to Find the Default Route Files��� 42

Route and RESTful Controller��� 43

How to List All Routes��� 43

Creating Controllers, Views, and Managing Routes��� 48

CRUD and the Seven Methods�� 51

Models Acts as a Resource�� 58

Models Act As Resources��� 61

Resourceful Controllers�� 62

The Importance of the Resourceful Controller�� 64

How to Supplement the Resource Controller��� 64

Getting User Input and Dependency Injection�� 65

How a Blade Template Works with Controllers and Models��� 68

Security in Blade�� 70

Authentication Through Blade�� 70

Control Structures in Blade�� 71

Other Advantages of Blade Templates�� 72

Chapter 4: Working with Models��� 75

Route Model Binding: Custom and Implicit�� 75

Implicit Route Binding�� 78

Custom Route Binding�� 79

Model Relations��� 80

How Migrations Work with the Laravel Model�� 81

Model and Faker Object��� 92

Examining the Home Page��� 97

Relations Between Model, Database, and Eloquent��� 104

Creating Views to Show Relationships��� 106

Table of Contents

vii

Chapter 5: Database Migration and Eloquent�� 113

Introduction to Migration��� 113

Introduction to Eloquent��� 114

Introduction to Eloquent Relations��� 115

One-to-One�� 116

One-to-Many�� 121

Separation of Concerns�� 128

Many-to-Many��� 132

Has-Many-Through�� 136

Polymorphic Relations��� 142

The Problem��� 143

The Solution�� 144

Summarizing All Relations��� 156

Chapter 6: Handling User Data and Redirects��� 167

How Redirect Methods Work�� 168

What Is a Request Object?��� 172

How Requests and Responses Work�� 174

Introducing Validation�� 175

Web Form Fundamentals��� 181

Using the Laravel HTML and Form Packages��� 182

Model Binding��� 186

The Traditional Way of Form Inputs�� 189

Form Request Validation�� 202

Chapter 7: Using Tinker��� 207

Handling a Database Using Tinker��� 207

SQLite Is a Breeze!��� 211

Table of Contents

viii

Chapter 8: Authentication, Authorization, and Middleware����������������������������������� 213

Different Authentication Methods in the Company/Project/Task Management Application������� 214

How Auth Controller Works and What Auth Middleware Is��� 228

Middleware, Authentication, and Authorization in One Place��� 235

The Company App’s Model-View-Controller��� 241

Home Page, Redirection, and Authentication�� 255

Role of a User and Authorization�� 263

Authorization Through the Blade Template�� 266

Implementing Authorization Using Gates and Policies��� 279

How Authorization Works�� 281

How Policies Work�� 285

Why Are Policies Needed?�� 287

Chapter 9: Containers and Facades��� 293

SOLID Design Principle�� 293

Single Responsibility Principle��� 294

The Open-Closed Principle��� 294

Liskov Substitution Principle�� 295

The Interface Segregation Principle��� 295

Dependency Inversion Principle��� 295

Interfaces and Method Injection�� 296

Contracts vs. Facades�� 297

How a Container Works in Laravel��� 301

Containers and Classes�� 306

Chapter 10: Working with the Mail Template�� 313

Local Development�� 313

Using Tinker to Find the Verified E-mail��� 319

Changing the Route�� 321

Sending E-mail and Notifications��� 323

Sending E-mails��� 324

How to Send Notifications�� 334

Table of Contents

ix

Chapter 11: Events and Broadcasting��� 341

What Are Events and Broadcasting?�� 341

Setting Up Events and Broadcasting�� 342

Creating Events�� 343

Receiving Messages��� 357

Autogenerating Events��� 366

Chapter 12: Working with APIs�� 367

What Is REST?�� 367

Creating an API��� 368

Working with Laravel Passport�� 385

API Authentication�� 395

Appendix: More New Features in Laravel 5.8�� �399

What Is the Dump Server Feature?�� 399

Improved artisan Command��� 407

A Few More Additions�� 410

Renaming the Mail Format Folder�� 410

Changes to .env�� 410

Changing the Look of Error Pages�� 411

Improving Array and String Helper Functions��� 412

Changes in Caching�� 412

Where to Go from Here�� 413

Index�� 415

Table of Contents

xi

About the Author

Sanjib Sinha is a certified .NET Windows and web

developer, specializing in Python, security programming,

PHP, Java, and Dart. He won Microsoft’s Community

Contributor Award in 2011. As a published author, Sanjib

Sinha has written Beginning Ethical Hacking with Kali

Linux, Beginning Ethical Hacking with Python, and Beginning

Laravel for Apress.  

xiii

About the Technical Reviewer

Yogesh Sharma is a solution architect and full-stack

engineer working at Mphasis Ltd. Primarily responsible for

the design, development, configuration, and migration of

various applications and modules with exceptional service

quality over major platforms and service providers for DXC

Technologies. He likes to cook for his family and spends free

time fragging his friends on PlayStation. He can be reached

at https://www.linkedin.com/in/yogisharma24/.  

https://www.linkedin.com/in/yogisharma24/

xv

Acknowledgments

I wish to record my gratitude to my wife, Kaberi, for her unstinting support and

encouragement in the preparation of this book.

I am extremely grateful to Mr. Matthew Moodie, lead development editor, for his

numerous valuable suggestions, complimentary opinions, and thorough thumbing; to

Nikhil Karkal, editor, and Divya Modi, coordinating editor; and to the whole Apress team

for their persistent support and help.

In the preparation of this book, I have had to consult numerous open source

documentation and textbooks on a variety of subjects related to PHP 7 and Laravel 5.8.

I thank the countless authors who have written them. I hereby acknowledge my special

indebtedness to the creator of Laravel, Mr. Taylor Otwell.

xvii

Introduction

After reading this book, you will be able to develop any web application using Laravel 5.8.

It details all you need to know, including the Model-View-Controller pattern, SQLite

databases, routing, Eloquent relations, authorization, middleware, events, broadcasting,

APIs, and CRUD applications. I use four applications to explain various aspects of

Laravel 5.8, and you can find the source code for all of them in this book’s GitHub

repository, which you can find at http://www.apress.com/source-code.

After showing how to set up your environment, the book explains routing, controllers,

templates, and views in detail so that beginners can get started easily. It explains how a

resourceful controller can become your great friend in keeping resources separated.

While introducing models, I also explain route model binding, model relations, and

the relationship between models, databases, and Eloquent.

I also explain how user input and dependency injection work together and how

Elixir and pagination work.

Understanding Eloquent relationships is important, so this book explains all types of

relations, including one-to-one, one-to-many, many-to-many, has-many-through, and

polymorphic.

While learning about Query Builder and Database Facade, you will also learn how

you use fake database data for testing purposes.

Handling user data and redirecting it plays a big role in Laravel, so this is explained

along with web form fundamentals and validations.

Artisan and Tinker are two great features of Laravel 5.8; you will learn about them in

detail. You will also learn how to use SQLite in a small or medium-sized application.

In this book, you will get a detailed overview of authentication, authorization, and

middleware; in addition, you will learn how authorization can be managed through

Blade templates, gates, and policies.

After a detailed discussion of Laravel container and facades, you will learn how a

mail template works, how one user can send a notification to another, and so on. Events

and broadcasting also play vital roles in building complicated applications. The same is

true for APIs; they are explained with examples.

At the end of the book, you will also get a glimpse of all the new features of Laravel 5.8.

http://www.apress.com/source-code

1
© Sanjib Sinha 2019
S. Sinha, Beginning Laravel, https://doi.org/10.1007/978-1-4842-4991-8_1

CHAPTER 1

Introduction to Laravel
This book is intended for intermediate-level PHP developers. Advanced users may also

find this book helpful to keep on hand as a quick reference. Either way, you should

have a good grasp of object-oriented PHP7 programming knowledge to understand the

examples.

�Laravel’s Flexibility
Laravel is a highly flexible PHP framework, and it makes complicated tasks easier to do.

Laravel provides powerful tools for making large, robust applications; however,

to accomplish that, you need to understand a few key concepts such as how to use

IoC containers or service containers to manage class dependencies. The expressive

migration system is another concept that you will learn about in detail in Chapter 5.

Behind the scenes, Laravel uses many design patterns, and as you progress through

this book, you will find that from the beginning Laravel helps you code in a loosely

coupled environment. The framework focuses on designing classes to have a single

responsibility, avoiding hard-coding in the higher-level modules, and allowing IoC

containers to have abstractions that depend on the details. Higher-level modules do not

depend on the lower-level modules, making coding a joyful experience.

As you progress through the book, you will find plenty of examples supporting

this general paradigm. Because of this flexibility, Laravel has become one of the most

popular frameworks today.

2

If you are not convinced, I will also say that without the help of a framework like

Laravel, you would need to write thousands of lines of code that would probably start out

by routing HTTP requests. In Laravel, it is simple and straightforward to route an HTTP

request. This is defined in the routes/web.php file, as shown here:

//code 1.1

//Laravel Route Example

Route::get('/', function () {

 return view('welcome');

});

This defines the URL for an application. While defining the URL, Laravel also helps

you return a Blade template page that you can use to nicely format and design your data.

You will learn about this in detail in Chapter 3.

In any other framework, you won’t know how complicated the requests will be

and what your responses will be. So, you’ll need response libraries to assist you in your

framework, which could easily be a humongous task to implement.

Laravel can handle your request/response lifecycle quite easily. The complexity

of requests does not matter here. Laravel’s HTTP middleware consists of little HTTP

layers that surround your application. So, every request must pass through these HTTP

middleware layers before hitting your application. They can intercept and interrupt the

HTTP request/response lifecycle, so you can stay calm about all the security matters

that are most important. From the beginning, you have a well-guarded application

interface when you install Laravel. You can think the first layer as the authentication

layer, whereas the middleware tests whether the user is authenticated. If the user is

not authenticated, the user is sent back to the login page. If the user passes the test,

the user must face the second layer, which could consist of CSRF token validation. The

process goes on like this, and the most common use cases of the Laravel middleware that

protects your application are authentication, CSRF token validation, maintenance mode,

and so on. When your application is in maintenance mode, a custom view is displayed

for all requests.

For any experienced developer, it takes many months to build well-structured

containers that can handle such complex requests and at the same time terminate the

response lifecycle at the proper time.

Chapter 1 Introduction to Laravel

3

Frameworks help you achieve this goal in a short period of time. Finding

components is much easier; once you understand how routing works in Laravel, you can

apply it quite easily for the rest of your working life.

In addition, Laravel’s installation process is simple. With the help of the Composer

dependency manager, you can manage it quite easily. In Chapter 2, I will discuss it in

detail.

As a developer, you are here to solve multiple problems, and a framework like

Laravel, in most cases, addresses those problems in an elegant way. So, you don’t have

to write tons of libraries and worry about version changes. The makers of Laravel have

already thought about that.

Laravel’s author, Taylor Otwell, summarizes the flexible features of Laravel as follows

(from a PHPWorld conference in 2014):

•	 Aim for simplicity

•	 Minimal configuration

•	 Terse, memorable, expressive syntax

•	 Powerful infrastructure for modern PHP

•	 Great for beginners and advanced developers

•	 Embraces the PHP community

�How Laravel Works
Laravel follows the MVC pattern of logic. But it has many more features that have

enhanced the pattern’s features, elevating them to a new level.

Laravel ships with a dependency injection (DI) mechanism by default (Figure 1-1).

Chapter 1 Introduction to Laravel

4

If you are new to this important concept of software building and programming,

don’t worry. I will discuss it in great detail later. For now, know that the DI mechanism is

a way to add a class instance to another class instance using a class constructor.

Let’s consider a real-life example. Take a look at the following code first; then I will

explain how IoC and DI work together in Laravel:

//How to use abstraction using higher-level and lower-level modules

interface PaymentInterface {

 public function notify();

}

class PaymentGateway implements PaymentInterface {

 public function notify() {

 return "You have paid through Stripe";

Figure 1-1.  How DI works with an IoC container

Chapter 1 Introduction to Laravel

5

 }

}

class PaymentNotification {

 protected $notify;

 public function __construct(PaymentInterface $notify) {

 $this->notify = $notify;

 }

 public function notifyClient() {

 return "We have received your payment. {$this->notify->notify()}";

 }

}

$notify = new PaymentNotification(new PaymentGateway);

echo $notify->notifyClient();

With the previous code, you will get output like this:

We have received your payment, you have paid through Stripe.

The key concept of DI is that the abstraction (here, PaymentInterface) never worries

about the details. The lower-level implementation modules (here, the PaymentGateway

class) handle the details. In this case, it uses Stripe as a payment gateway. And the

PaymentNotification class uses the abstraction to get those details. It also does not

bother about what type of payment gateway has been used.

Now if the client changes the payment gateway from Stripe to PayPal, you don’t have to

hard-code it into the class that uses the payment gateway. In the implementation, you will

change it, and any class into which you inject the implementation will reflect the change.

Depending on many classes is necessary. Managing those dependencies is not easy.

Using an IoC container, you can manage the class dependencies as I have shown in

the previous code. The IoC container resolves the dependencies easily. In fact, the IoC

container is a central piece of the Laravel framework. This container can build complex

objects for you.

Chapter 1 Introduction to Laravel

6

Note D I is a form of IoC, which is why the container that manages this is called
an IoC container.

Laravel ships with more than a dozen service providers, and they manage the IoC

container bindings for the core Laravel framework components.

The system loops through all the providers since you don’t use them all the time.

Suppose you are using a form to send data; HTMLServiceProvider helps you with that.

As shown in Figure 1-2, the kernel sends the request through the middleware to the

controller, which I’ll cover in the next section.

Figure 1-2.  How the route and middleware request and response cycle work
together

Chapter 1 Introduction to Laravel

7

If you open the config/app.php file, you will find these lines of code:

//code 1.16

//config/app.php

'providers' => [

 /*

 * Laravel Framework Service Providers...

 */

 Illuminate\Auth\AuthServiceProvider::class,

 Illuminate\Broadcasting\BroadcastServiceProvider::class,

 Illuminate\Bus\BusServiceProvider::class,

 Illuminate\Cache\CacheServiceProvider::class,

...

App\Providers\EventServiceProvider::class,

 App\Providers\RouteServiceProvider::class,

],

This code is not shown here in its entirety, but this gives you an idea how the Laravel

kernel system loops through those providers.

The Silex microframework, once maintained by Symfony, is now deprecated (at the
time of writing this book), yet I encourage you to download it. You can study the
similarities and differences compared to Laravel.

�What Is the MVC Pattern?
How do you successfully implement user interfaces with Laravel and follow the

separation of concerns principle? The Model-View-Controller (MVC) architecture is the

answer. And Laravel helps you do this quite easily (Figure 1-3).

The workflow is simple: the user action reaches the controller from the view. The

controller notifies the model. Accordingly, the model updates the controller. After that,

the controller again updates the user.

Chapter 1 Introduction to Laravel

8

That is why it is commonly used and a popular choice. The separation of concerns

principle usually separates the application logic from the presentation layers in Laravel.

Quite naturally, your application will become more flexible, modular, and reusable.

Let’s imagine a social networking application where you want to view a user’s page.

You may click a link that looks like this:

https://example.com/home/index/username

Here you can imagine that home is the controller, index is the method, and in the

username section you can even pass an ID. This is pretty simple, and it takes you to the

user’s page. How you can make your app work through an MVC model like this?

As you might guess, you will get the user’s data from a database. The model defines

what data your application should contain. So, it is model’s job to interact with the

database. Now, a user’s database will be constantly evolving; changes will take place, and

the user will make updates. If the state of this data changes, the model will usually notify

the view. If different logic is needed to control the view, the model notifies the controller.

Figure 1-3.  How the MVC workflow works

Chapter 1 Introduction to Laravel

9

Keeping the social media app in mind, the model would specify what data a list item

should contain, such as first name, last name, location, and so on.

The role of the controller is critical. It contains the programming logic that updates

the model and sometimes the view in response to input from the users of the app. In

other social media apps, almost the same thing happens. The app could have input

forms to allow you to post or edit or delete the data. The actions require the model to be

updated, so the input is sent to the controller, which then acts upon the model, and the

model then sends the updated data to the view. Now, this view can be manipulated in a

different manner; you can use your layout template engine. In some cases, the controller

can handle these tasks independently without needing to update the model.

Compared to the functions of the model and the controller, the workflow of the view

consists of simple tasks. It will define only how the list is presented to another user. It will

also receive the data from the model to display.

Actually, you have seen this pattern before. The data model uses some kind of

database, probably MySQL in the LAMP technology. In such cases, your controller’s

code is written in PHP, and in your view part, you have used a combination of HTML

and CSS.

�How the MVC Pattern Works
Imagine a portal, where your user interacts with the user interface in some way, such as

by clicking a link or submitting a form. Now, the controller takes charge and handles the

user input event from the user interface. Consequently, the controller notifies the model

of the user action. Usually, the state of model changes. Suppose the controller updates

the status of the user. It interacts with the model, and the model has no direct knowledge

of the view. The model passes data objects to the controller, and then your controller

generates the content with that dynamic data.

Because of its simple iterations and the principle of separation of concerns, the MVC

pattern is often found in web application.

Now, the MVC pattern can be interpreted in different ways: A section of people

thinks that the actual processing part is handled by the model, and the controller

handles only the input data. In such interpretations, the input-processing-output flow

is represented by Controller-Model-View; here the controller interprets the mouse and

keyboard inputs from the user.

Chapter 1 Introduction to Laravel

10

Therefore, a controller is responsible for mapping end-user actions to application

responses, whereas a model’s actions include activating business processes or changing

the state of the model. The user’s interactions and model’s response decide how a

controller will respond by selecting an appropriate view.

To summarize, an MVC pattern must have a minimum of three components, each

of which performs its own responsibilities. Now many MVC frameworks add extra

functionalities such as a data access object (DAO) to communicate with the relational

database.

In normal circumstances, the data flow between each of these components carries

out its designated tasks; however, it is up to you to decide how this data flow is to be

implemented. With the MVC framework, you will learn that the data is pushed by

the controller into the view. At the same time, the controller keeps manipulating the

data in the model. Now the question is, who is doing the real processing? The model

or controller? Does the controller play an intermediary role, and behind the scenes,

the model actually pulls the strings? Or, is the controller the actual processing unit

controlling the database manipulations and representation simultaneously?

It does not matter as long as the data flows and the pattern works. In the Laravel

applications in this book, you will implement MVC in a way so that the controller will do

processing jobs, controlling the model and the view simultaneously.

When using the MVC framework, you must keep a separate DAO, and the model

will handle the DAO as appropriate. Therefore, all SQL statements can be generated and

executed in only one place. Data validation and manipulation can be applied in one

place: the model. The controller will handle the request/response lifecycle, taking the

input from the user interface and updating model accordingly. When the controller gets

the green signal from the model, it sends the response to the view. The view is aware of

only one thing: the display.

Chapter 1 Introduction to Laravel

11
© Sanjib Sinha 2019
S. Sinha, Beginning Laravel, https://doi.org/10.1007/978-1-4842-4991-8_2

CHAPTER 2

Setting Up Your
Environment
This chapter will help you install Composer, both locally and globally, and introduce you

to Valet, Homestead, VirtualBox, Vagrant, and Forge. You will also learn how to create a

new project in Laravel 5.8 using your Homestead development environment.

�Composer
Composer is a dependency management tool in PHP. For any PHP project, you need

to use a library of code. Composer easily manages this task on your behalf, helping you

to declare those libraries and packages. You can also install or update any code in your

library through Composer. Please visit https://getcomposer.org for more details.

Without the help of the Composer dependency manager, you cannot install Laravel.

Moreover, as you dig deeper into Laravel, you will need even more packages and libraries

to build your application.

You can install Composer in two ways.

•	 Locally: You can download and install Composer each time for every

project rather than running Composer globally on your system.

Because you install Composer locally each time, you will have no

trace of the Composer package manager on your host machine.

•	 Globally: The global option is always preferable because once

Composer is installed in your system’s bin folder, you can call it anytime

for any project. Whether you use Windows, Debian-based Linux like

Ubuntu, or macOS, the global option always rules over the local one.

I’ll show how to install Composer globally in the next section and then cover the

local option.

https://getcomposer.org

12

�Installing Composer Globally
For any Debian-based Linux distribution like Ubuntu or macOS, you can download

Laravel using Composer in any folder anywhere and start working with it. If you use

Windows, I suggest you download helper software like XAMPP that comes with the

LAMP technology.

Installing Composer globally on your system requires a few steps, as shown here, in

your terminal:

//how to install Composer globally

$ sudo apt-get update

$ sudo apt-get install curl php-cli php-mbstring git unzip

$ curl -sS https://getcomposer.org/installer -o composer-setup.php

Here you need to run a short PHP script to match the secret key. Issue this command

on your terminal:

php -r "if (hash_file('SHA384', 'composer-setup.php') ===

'669656bab3166a7aff8a7506b8cb2d1c292f042046c5a994c43155c0be6190fa0355160742

ab2e1c88d40d5be660b410') { echo 'Installer verified'; } else { echo

'Installer corrupt'; unlink('composer-setup.php'); } echo PHP_EOL;"

You will get output like this:

Installer verified

After that, you need to move Composer to your /usr/local/bin folder. Run this

command:

$ sudo php composer-setup.php --install-dir=/usr/local/bin

--filename=composer

You will get output like this:

All settings correct for using Composer

Downloading 1.1.1...

Composer successfully installed to: /usr/local/bin/composer

Use it: php /usr/local/bin/composer

Chapter 2 Setting Up Your Environment

13

�Installing Laravel Globally
Next, you need to be using a LAMP server properly. This means you already have an

operating system based on Linux, and you have the Apache web server, the MySQL

database, and at least PHP 7.0. If this architecture is all set up, you can go ahead and

download Laravel with a simple command like this:

//code 2.1

//installing Laravel with global composer

composer create-project --prefer-dist laravel/laravel

YourFirstLaravelProject

You can even be choosy with a particular Laravel version such as this:

//code 2.2

composer create-project --prefer-dist laravel/laravel blog "5.7.*"

Once you have Composer installed on your Windows system, you can use the same

command to install Laravel in the C:\xampp\htdocs\Dashboard\YourPreferredFolder

directory. You can use a terminal almost the same way as in Linux or macOS. There are

small differences between operating systems; for example, on Linux or macOS, you use

ls -la for a long listing, but in Windows, you use dir. These commands will tell you

what is inside the Laravel folder.

On all operating systems, the next command to run Laravel is as follows:

//code 2.3

//running Laravel

$ php artisan serve

You can now go to http://localhost:8000 to see what’s there.

The artisan command is the most powerful tool Laravel comes with. With the help

of the artisan command, you can create all the necessary components you need for

your application.

The artisan command creates the following:

•	 Controller

•	 Models

•	 Migrations

Chapter 2 Setting Up Your Environment

14

•	 Seeds

•	 Tests

And there are many other components the artisan command creates. artisan also

helps you work with your database using tools like Tinker. I will cover those features in

later chapters.

You already saw how artisan helps you start the web server.

//code 2.4

//starting local web server in laravel

$ php artisan serve

You can also take the application into maintenance mode.

//code 2.5

//Taking application to the maintenance mode

$ php artisan down

After your maintenance work has been finished, you can issue the up command in

the same way and again start the web server.

Clearing the cache is also simple.

//code 2.6

//Clearing cache

$ php artisan cache:clear

These are a few examples of how Laravel makes a developer’s life easier. As you

progress in the book, you will see artisan used frequently.

�Installing Laravel Locally with Composer
In Ubuntu-like operating systems, for any local PHP project, you use the /var/www/html

folder. In this section, you’ll learn how to install a Laravel project there using Composer

locally.

Installing Laravel locally with the help of Composer means you have to use the

following command for each installation. You won’t have Composer on your system

globally like in the previous section. You can compare the following steps for installing

locally with the global option I showed earlier; you’ll see that the global option is easier.

Chapter 2 Setting Up Your Environment

15

You need to create a folder and name it MyFirstLaravelProject. Open your Ubuntu

terminal (Control+Alt+T) and type the following command:

//code 2.7

$ cd /var/www/html

You can make a directory here with a simple command.

//code 2.8

$ sudo mkdir MyFirstLaravelProject

It will ask for your root user’s password. Type the password, and a folder called

MyFirstLaravelProject will be created.

Next, in this folder, you can download and install Composer locally. Then issue the

following two commands one after another. First you type this:

//code 2.9

$ sudo php -r "copy('https://getcomposer.org/installer', 'composer-setup.

php');"

Next you type this:

//code 2.10

$ sudo php composer-setup.php

This will organize your Composer setup file to go further. Actually, Composer is

ready to download packages for your upcoming projects. You can test it by creating a

composer.json file in your MyFirstLaravelProject folder. In that composer.json file,

type this:

//code 2.11

{

 "require": {

 "monolog/monolog": "1.0.*"

 }

}

Chapter 2 Setting Up Your Environment

16

Now you will learn how to install the monolog PHP package for your Laravel project.

You’re actually testing your Composer installer to see how it works. Type this command

on your terminal:

//code 2.12

$ php composer.phar install

It’ll take a moment to install the monolog package.

After the installation is complete, you’ll find a vendor folder and a few Composer

files in your project. Feel free to take a look at what is inside the vendor folder. There

you’ll find two folders: composer and monolog. Again, you can take a look at what they

have inside them.

The time has come to install the latest version of Laravel through Composer. You can

install Laravel just like the monolog package. This means you can write that instruction

in your composer.json file and just update Composer. Open your terminal and write the

following:

//code 2.13

$ sudo composer create-project --prefer-dist laravel/laravel blog

This will install the latest version of Laravel in the folder blog in your Laravel project,

named MyFirstLaravelProject. The first step is completed: you’ve installed Laravel

in the /var/www/html/MyFirstLaravelProject/blog folder. Now you can go in that

folder and issue the Linux command ls -la to see what is inside. You can also type the

php artisan serve command to run your first Laravel application so that you can go to

http://localhost:8000 to see the welcome page. Remember, this installation has been

done locally.

�Introduction to Homestead, Valet, and Forge
In this section, the primary focus is on Homestead. I’ll also cover VirtualBox and Vagrant

because they work together with Homestead. In normal circumstances, Homestead

represents an environment, and VirtualBox runs that environment. Vagrant, as part of

that, helps to run the terminal, where you can create your Laravel project.

Chapter 2 Setting Up Your Environment

17

Homestead offers an entire Ubuntu virtual machine with automated Nginx

configuration. The following list shows what you get in Homestead:

•	 - Ubuntu 18.04

•	 - Git

•	 - PHP 7.3

•	 - PHP 7.2

•	 - PHP 7.1

•	 - PHP 7.0

•	 - PHP 5.6

•	 - Nginx

•	 - Apache (optional)

•	 - MySQL

•	 - MariaDB (optional)

•	 - Sqlite3

•	 - PostgreSQL

•	 - Composer

•	 - Node (with Yarn, Bower, Grunt, and Gulp)

•	 - Redis

•	 - Memcached

•	 - Beanstalkd

•	 - Mailhog

•	 - Neo4j (optional)

•	 - MongoDB (optional)

•	 - Elasticsearch (optional)

•	 - ngrok

•	 - wp-cli

Chapter 2 Setting Up Your Environment

18

•	 - Zend Z-Ray

•	 - Go

•	 - Minio

If you want a fully virtualized Laravel development environment, then Homestead

is the only answer. Moreover, Homestead is extremely flexible. You can use MySQL in

the beginning, and later you can use MariaDB, MongoDB, PostgreSQL, or any database

of your choice. If you feel comfortable with PHP, then you can use that too. In essence,

Homestead is a far more superior Laravel development environment than any other

option available.

Note that another option for Mac users is Valet. When doing local development,

Homestead and Valet differ mostly in size and flexibility. Valet only supports the PHP

and MySQL combination, although it is lightning fast. In the case of Valet, you need to

install PHP and MySQL on your home Mac machine or you won’t get a fully virtualized

environment for developing Laravel applications.

So, my suggestion is to go for Homestead to take advantage of the easy local

development environment.

Finally, Forge is a commercial service through which you can provision and deploy

various PHP applications including Laravel. By using Forge, you can deploy your Laravel

application to cloud services such as DigitalOcean, Linode, AWS, and more.

�Forge: Painless PHP Servers
You can imagine Forge as a service like Homestead; however, you need to buy it.

Homestead is a local development environment, but Forge can manage cloud servers so

that you can focus on building your application.

On the Forge server, you can install any application like WordPress, Symfony, and of

course Laravel. You can choose any cloud server, and the Laravel Forge product make

your life easier when deploying your application on the cloud.

As mentioned, Forge is a commercial product and comes with all the facilities that

a commercial product usually offers, such as SSL certificates, subdomain management,

queue worker management and cron jobs, load balancing, and so on.

Just like the Homestead local development environment, Forge gives you the same

cutting-edge server configuration so that you can take advantage of Ubuntu 18.04 LTS

and tailored server configurations, complete with Nginx, PHP 7, MySQL, Postgres, Redis,

Memcached, and automated security updates.

Chapter 2 Setting Up Your Environment

19

Deploying code is also easy as you can just push your master to your GitHub,

Bitbucket, or custom Git repository and Forge will take it from there.

�Installing VirtualBox and Vagrant
The Homestead virtualized development environment requires two things. First, you

need a virtual machine, which can be any of the following:

•	 VMware (https://www.vmware.com)

•	 VirtualBox 5.2 (https://www.virtualbox.org/wiki/Downloads)

•	 Parallels (https://www.parallels.com/products/desktop/)

•	 Hyper-V (https://docs.microsoft.com/en-us/virtualization/

hyper-v-on-windows/quick-start/enable-hyper-v)

Second, after installing any one of these virtual machines, you need to install

Vagrant.

https://www.vagrantup.com/downloads.html

Basically, Homestead will use any of these virtual machines as well as Vagrant to

run the local server, creating a development environment for your Laravel application.

The biggest advantage is you don’t require any LAMP technology directly on your host

machine anymore. Homestead is the best option not only for the Laravel application

but for any PHP application. You can test any type of PHP application or any other

framework in your Homestead development environment. That is the biggest advantage

of Homestead.

You can add as many projects as you want to your Homestead development

environment and test them locally.

Let’s now go through the steps to install Homestead so you can see how to start

your first Laravel application. The first step is to install a virtual machine. My choice is

VirtualBox 5.2.

Note VM ware is not free, although it is faster than others. Parallels needs extra
plugins. Hyper-V is fine, but VirtualBox is easier to install and maintain.

Chapter 2 Setting Up Your Environment

https://www.vmware.com
https://www.virtualbox.org/wiki/Downloads
https://www.parallels.com/products/desktop/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v

20

I don’t want you to waste time researching virtualized machines. You are here to

learn Laravel, and therefore you need a free, easily installable virtual machine. Let’s get

started.

//code 2.14

// installing VirtualBox on MAC/Linux

$ sudo apt-get install virtualbox

For Windows, download the required EXE file from https://www.virtualbox.org/

wiki/Downloads according to your Windows version and install it.

Next you need to install Vagrant. For macOS/Linux, the command is the same.

//code 2.15

// installing Vagrant

ss@ss-H81M-S1:~$ sudo apt-get install vagrant

[sudo] password for ss:

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following packages were automatically installed and are no longer

required:

 gir1.2-keybinder-3.0 jsonlint libcdaudio1 libenca0 libjs-excanvas

 libkeybinder-3.0-0 libllvm5.0 libllvm5.0:i386 libmcrypt4

 �libp11-kit-gnome-keyring:i386 libslv2-9 libsodium18 libvpx3:i386

mercurial

 mercurial-common php-cli-prompt php-composer-semver

 php-composer-spdx-licenses php-json-schema php-symfony-console

 php-symfony-filesystem php-symfony-finder php-symfony-process

Use 'sudo apt autoremove' to remove them.

The following additional packages will be installed:

 bsdtar bundler fonts-lato libgmp-dev libgmpxx4ldbl libruby2.3 rake ruby

 �ruby-bundler ruby-childprocess ruby-dev ruby-did-you-mean ruby-domain-

name

 ruby-erubis ruby-ffi ruby-http-cookie ruby-i18n ruby-listen ruby-log4r

 ruby-mime-types ruby-minitest ruby-molinillo ruby-net-http-persistent

 ruby-net-scp ruby-net-sftp ruby-net-ssh ruby-net-telnet ruby-netrc

 ruby-nokogiri ruby-power-assert ruby-rb-inotify ruby-rest-client

Chapter 2 Setting Up Your Environment

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

21

 ruby-sqlite3 ruby-test-unit ruby-thor ruby-unf ruby-unf-ext ruby2.3

 ruby2.3-dev rubygems-integration sqlite3

Suggested packages:

 �bsdcpio gmp-doc libgmp10-doc libmpfr-dev ri publicsuffix sqlite3-doc

The following NEW packages will be installed:

 bsdtar bundler fonts-lato libgmp-dev libgmpxx4ldbl libruby2.3 rake ruby

 �ruby-bundler ruby-childprocess ruby-dev ruby-did-you-mean ruby-domain-name

 ruby-erubis ruby-ffi ruby-http-cookie ruby-i18n ruby-listen ruby-log4r

 ruby-mime-types ruby-minitest ruby-molinillo ruby-net-http-persistent

 ruby-net-scp ruby-net-sftp ruby-net-ssh ruby-net-telnet ruby-netrc

 ruby-nokogiri ruby-power-assert ruby-rb-inotify ruby-rest-client

 ruby-sqlite3 ruby-test-unit ruby-thor ruby-unf ruby-unf-ext ruby2.3

 ruby2.3-dev rubygems-integration sqlite3 vagrant

0 upgraded, 42 newly installed, 0 to remove and 5 not upgraded.

Need to get 9,248 kB of archives.

After this operation, 44.8 MB of additional disk space will be used.

Do you want to continue? [Y/n] y

Get:1 http://in.archive.ubuntu.com/ubuntu xenial/main amd64 fonts-lato all

2.0-1 [2,693 kB]

Get:2 http://in.archive.ubuntu.com/ubuntu xenial-updates/universe amd64

bsdtar amd64 3.1.2-11ubuntu0.16.04.4 [48.0 kB]

Get:3 http://in.archive.ubuntu.com/ubuntu xenial/main amd64 rubygems-

integration all 1.10 [4,966 B]

Get:4 http://in.archive.ubuntu.com/ubuntu xenial/main amd64 rake all

10.5.0-2 [48.2 kB]

....

The code and output are not shown in full here for brevity.

After installing Vagrant, you can issue a single command to find out Vagrant’s

version.

//code 2.16

$ vagrant -v

//output

Vagrant 2.2.3

Chapter 2 Setting Up Your Environment

22

Be it VirtualBox or Vagrant, all of these software packages provide easy-to-use visual

installers for Windows. For macOS and Linux, you can take advantage of the terminal.

To initialize Vagrant, you need to issue these commands one after another:

//code 2.17

$ vagrant box add ubuntu/trusty64

==> box: Loading metadata for box 'ubuntu/trusty64'

 box: URL: https://vagrantcloud.com/ubuntu/trusty64

==> box: �Adding box 'ubuntu/trusty64' (v20181218.1.0) for provider:

virtualbox

 box: �Downloading: https://vagrantcloud.com/ubuntu/boxes/trusty64/

versions/20181218.1.0/providers/virtualbox.box

==> box: �Successfully added box 'ubuntu/trusty64' (v20181218.1.0) for

'virtualbox'!

//code 2.18

ss@ss-H81M-S1:~$ vagrant init ubuntu/trusty64

A `Vagrantfile` has been placed in this directory. You are now

ready to `vagrant up` your first virtual environment! Please read

the comments in the Vagrantfile as well as documentation on

`vagrantup.com` for more information on using Vagrant.

ss@ss-H81M-S1:~$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

==> default: Importing base box 'ubuntu/trusty64'...

==> default: Matching MAC address for NAT networking...

==> default: Checking if box 'ubuntu/trusty64' is up to date...

==> default: Setting the name of the VM: ss_default_1547081879727_59147

==> default: Clearing any previously set forwarded ports...

==> default: Clearing any previously set network interfaces...

==> default: Preparing network interfaces based on configuration...

 default: Adapter 1: nat

==> default: Forwarding ports...

 default: 22 (guest) => 2222 (host) (adapter 1)

==> default: Booting VM...

Chapter 2 Setting Up Your Environment

23

==> default: Waiting for machine to boot. This may take a few minutes...

 default: SSH address: 127.0.0.1:2222

 default: SSH username: vagrant

 default: SSH auth method: private key

 default:

 �default: �Vagrant insecure key detected. Vagrant will automatically

replace

 default: this with a newly generated keypair for better security.

 default:

 default: Inserting generated public key within guest...

 default: Removing insecure key from the guest if it's present...

 �default: �Key inserted! Disconnecting and reconnecting using new SSH

key...

==> default: Machine booted and ready!

==> default: Checking for guest additions in VM...

 �default: �The guest additions on this VM do not match the installed

version of

 �default: VirtualBox! In most cases this is fine, but in rare cases it can

 �default: �prevent things such as shared folders from working properly.

If you see

 �default: �shared folder errors, please make sure the guest additions

within the

 �default: �virtual machine match the version of VirtualBox you have

installed on

 default: your host and reload your VM.

 default:

 default: Guest Additions Version: 4.3.36

 default: VirtualBox Version: 5.1

==> default: Mounting shared folders...

 default: /vagrant => /home/ss

...

Chapter 2 Setting Up Your Environment

24

The code isn’t shown in full for brevity in the book. These commands basically have

initialized Vagrant, and now you can also add the Composer packages. Vagrant has

mounted the shared folders where you will keep your projects from now on. It will be in

code in your home directory, like this:

//home/user/code/YourProjectsHere

In my case, since my username is ss, it looks like this:

/home/ss/code/

I will keep Laravel and my PHP projects here in the future, in different subfolders.

The next command will help you to add Homestead through Vagrant:

//code 2.19

$ sudo composer global require "laravel/homestead=~2.0"

[sudo] password for ss:

Changed current directory to /home/ss/.composer

Do not run Composer as root/super user! See https://getcomposer.org/root

for details

./composer.json has been created

Loading composer repositories with package information

Updating dependencies (including require-dev)

Package operations: 6 installs, 0 updates, 0 removals

 - Installing symfony/process (v3.4.21): Downloading (100%)

 - Installing psr/log (1.1.0): Downloading (100%)

 - Installing symfony/debug (v4.2.2): Downloading (100%)

 - Installing symfony/polyfill-mbstring (v1.10.0): Downloading (100%)

 - Installing symfony/console (v3.4.21): Downloading (100%)

 - Installing laravel/homestead (v2.2.2): Downloading (100%)

symfony/console suggests installing psr/log-implementation (For using the

console logger)

symfony/console suggests installing symfony/event-dispatcher ()

symfony/console suggests installing symfony/lock ()

Writing lock file

Generating autoload files

Chapter 2 Setting Up Your Environment

25

�Installing Homestead Using Vagrant
The next step is the painless installation of Homestead so that you can get these

virtualization processes completed. Let’s install Homestead with the help of Vagrant, as

shown here:

//code 2.20

// installing Homestead

$ vagrant box add laravel/homestead

==> box: Loading metadata for box 'laravel/homestead'

 box: URL: https://vagrantcloud.com/laravel/homestead

This box can work with multiple providers! The providers that it

can work with are listed below. Please review the list and choose

the provider you will be working with.

1) hyperv

2) parallels

3) virtualbox

4) vmware_desktop

Enter your choice: 3

==> box: Adding box 'laravel/homestead' (v6.4.0) for provider: virtualbox

 box: �Downloading: https://vagrantcloud.com/laravel/boxes/homestead/

versions/6.4.0/providers/virtualbox.box

 box: �Download redirected to host: vagrantcloud-files-production.

s3.amazonaws.com

==> box: �Successfully added box 'laravel/homestead' (v6.4.0) for

'virtualbox'!

...

The code is incomplete, although you can see that I have chosen number 3, as

I have already installed VirtualBox and I am going to use VirtualBox for my further

virtualization processes. It will take a few minutes to download the box, depending on

your Internet connection speed.

Next, clone the repositories into a Homestead folder within your home directory.

//code 2.21

$ cd ~

$ git clone https://github.com/laravel/homestead.git Homestead

Chapter 2 Setting Up Your Environment

26

Cloning into 'Homestead'...

remote: Enumerating objects: 22, done.

remote: Counting objects: 100% (22/22), done.

remote: Compressing objects: 100% (16/16), done.

remote: Total 3232 (delta 14), reused 10 (delta 6), pack-reused 3210

Receiving objects: 100% (3232/3232), 689.62 KiB | 926.00 KiB/s, done.

Resolving deltas: 100% (1942/1942), done.

Checking connectivity... done.

Once you have cloned the Homestead repository, you should run the bash init.

sh command from the Homestead directory to create the Homestead.yaml configuration

file. The Homestead.yaml file will be placed in the Homestead directory. You need this file

to edit your further connections.

//code 2.22

//for Mac and Linux...

$ bash init.sh

//for Windows...

 init.bat

Now you can check what your Homestead folder consists of, as shown here:

//code 2.23

$ cd ~/Homestead

$ ls -la

total 184

drwxrwxr-x 9 ss ss 4096 Jan 10 07:07 .

drwxr-xr-x 54 ss ss 4096 Jan 10 07:03 ..

-rw-rw-r-- 1 ss ss 332 Jan 10 07:07 after.sh

-rw-rw-r-- 1 ss ss 7669 Jan 10 07:07 aliases

drwxrwxr-x 2 ss ss 4096 Jan 10 07:03 bin

-rw-rw-r-- 1 ss ss 187 Jan 10 07:03 CHANGELOG.md

-rw-rw-r-- 1 ss ss 853 Jan 10 07:03 composer.json

-rw-rw-r-- 1 ss ss 82005 Jan 10 07:03 composer.lock

-rw-rw-r-- 1 ss ss 213 Jan 10 07:03 .editorconfig

drwxrwxr-x 8 ss ss 4096 Jan 10 07:03 .git

-rw-rw-r-- 1 ss ss 14 Jan 10 07:03 .gitattributes

drwxrwxr-x 2 ss ss 4096 Jan 10 07:03 .github

Chapter 2 Setting Up Your Environment

27

-rw-rw-r-- 1 ss ss 154 Jan 10 07:03 .gitignore

-rw-rw-r-- 1 ss ss 681 Jan 10 07:07 Homestead.yaml

-rw-rw-r-- 1 ss ss 265 Jan 10 07:03 init.bat

-rw-rw-r-- 1 ss ss 250 Jan 10 07:03 init.sh

-rw-rw-r-- 1 ss ss 1077 Jan 10 07:03 LICENSE.txt

-rw-rw-r-- 1 ss ss 383 Jan 10 07:03 phpunit.xml.dist

-rw-rw-r-- 1 ss ss 1404 Jan 10 07:03 readme.md

drwxrwxr-x 3 ss ss 4096 Jan 10 07:03 resources

drwxrwxr-x 2 ss ss 4096 Jan 10 07:03 scripts

drwxrwxr-x 4 ss ss 4096 Jan 10 07:03 src

drwxrwxr-x 4 ss ss 4096 Jan 10 07:03 tests

-rw-rw-r-- 1 ss ss 277 Jan 10 07:03 .travis.yml

-rw-rw-r-- 1 ss ss 1878 Jan 10 07:03 Vagrantfile

�Configuring Homestead
Now you will configure Homestead using the Homestead.yaml file. If you are familiar

with using terminal text editors such as Nano or Vim, you can go ahead and use your

favorite tool. Or, you can use this command:

//code 2.24

ss@ss-H81M-S1:~/Homestead$ sudo gedit Homestead.yaml

This will open the Homestead.yaml file. The provider key in your Homestead.yaml

file indicates which Vagrant provider should be used; it will be virtualbox or any other.

You can set this to the provider you prefer as shown here:

//code 2.25

ip: "192.168.10.10"

memory: 2048

cpus: 1

provider: virtualbox

authorize: ~/.ssh/id_rsa.pub

Chapter 2 Setting Up Your Environment

28

keys:

 - ~/.ssh/id_rsa

folders:

 - map: ~/code

 to: /home/vagrant/code

sites:

 - map: homestead.test

 to: /home/vagrant/code/public

databases:

 - homestead

ports:

- send: 50000

to: 5000

- send: 7777

to: 777

protocol: udp

blackfire:

- id: foo

token: bar

client-id: foo

client-token: bar

zray:

If you've already freely registered Z-Ray, you can place the token here.

- email: foo@bar.com

token: foo

Don't forget to ensure that you have 'zray: "true"' for your site.

�Shared Folders and Homestead
In the previous section, I showed how to set virtualbox as the provider. I also set the

shared folders that point to the Homestead environment. Take a look at these lines (from

code 2.25):

Chapter 2 Setting Up Your Environment

29

folders:

 - map: ~/code

 to: /home/vagrant/code

sites:

 - map: homestead.test

 to: /home/vagrant/code/public

databases:

- homestead

The previous code says I should keep my code repositories in the /home/ss/code

folder (~/code).

However, you can change this configuration, and the files in these folders will be

kept in sync between your local machine and the Homestead environment. You may

configure as many shared folders as necessary.

Finally, I have decided to start with two shared folders that will host two Laravel

applications and assign two MySQL databases to them. So, these lines in my Homestead.

yaml file look like this:

//code 2.26

// Homestead.yaml

ip: "192.168.10.10"

memory: 2048

cpus: 1

provider: virtualbox

authorize: ~/.ssh/id_rsa.pub

keys:

 - ~/.ssh/id_rsa

folders:

 - map: ~/code

 to: /home/vagrant/code

 - map: ~/code

 to: /home/vagrant/code

Chapter 2 Setting Up Your Environment

30

sites:

 - map: test.localhost

 to: /home/vagrant/code/blog/public

 - map: my.local

 to: /home/vagrant/code/larastartofinish/public

databases:

 - homestead

- myappo

In the previous code, you can see these repeated lines:

folders:

 - map: ~/code

 to: /home/vagrant/code

 - map: ~/code

 to: /home/vagrant/code

This is not just repetitive code; it means that for both projects I have chosen the /

home/vagrant/code folder.

If you are following along, now you can run the Homestead environment and test

your applications locally. You can type either test.localhost or my.local URL in your

browser, and that will run your Laravel applications. However, before that, you need to

accomplish one major task.

You must add these domains for your sites to the hosts file on your machine.

The hosts file will redirect requests for your Homestead environment sites into your

Homestead environment. On macOS/Linux, the hosts file is located in /etc/hosts.

So, type this command:

//code 2.27

//editing /etc/hosts file

$ sudo gedit /etc/hosts

This will give you the following output:

//output of code 2.27

127.0.0.1 localhost

Chapter 2 Setting Up Your Environment

31

::1 ip6-localhost ip6-loopback

127.0.1.1 ss-H81M-S1

127.0.0.1 sandbox.dev

The following lines are desirable for IPv6 capable hosts

::1 ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

On Windows, this is located in C:\Windows\System32\drivers\etc\hosts. The lines

you add to this file will look like the following:

192.168.10.10 test.localhost

192.168.10.10 my.local

Please note that the IP addresses listed are the same as the ones in your Homestead.

yaml file. Once you have added domains to your hosts file, you can launch the Vagrant box.

�Launching the Vagrant Box
Launching the Vagrant box will enable you to access the site via your browser.

http://test.localhost

http://my.local

Launching the Vagrant box is easy. By staying in the Homestead folder, issue this

command:

//code 2.28

$ vagrant up --provision

Why have I added --provision to the vagrant up command?

You need to understand one key concept regarding the sites property of

Homestead. Originally, the Homestead.yaml file has these lines of code:

//code 2.2

- map: ~/code

 to: /home/vagrant/code

Chapter 2 Setting Up Your Environment

32

sites:

 - map: homestead.test

 to: /home/vagrant/code/public

But you have changed these lines to this:

//code 2.30

 - map: ~/code

 to: /home/vagrant/code

 - map: ~/code

 to: /home/vagrant/code

sites:

 - map: test.localhost

 to: /home/vagrant/code/blog/public

 - map: my.local

 to: /home/vagrant/code/larastartofinish/public

If you change the original sites property of Homestead, you need to provision the

change to ensure it is applied.

You could have issued a command like vagrant reload --provision to update

the Nginx configuration on the virtual machine, and then you can issue the vagrant up

command. If it does not work, each time you need to add the --provision flag with your

vagrant up command.

//code 2.31

ss@ss-H81M-S1:~/Homestead$ vagrant up --provision

Bringing machine 'homestead-7' up with 'virtualbox' provider...

==> homestead-7: �Checking if box 'laravel/homestead' version '6.4.0' is up

to date...

==> homestead-7: Clearing any previously set forwarded ports...

==> homestead-7: Vagrant has detected a configuration issue which exposes a

==> homestead-7: vulnerability with the installed version of VirtualBox. The

==> homestead-7: current guest is configured to use an E1000 NIC type for a

==> homestead-7: �network adapter which is vulnerable in this version of

VirtualBox.

Chapter 2 Setting Up Your Environment

33

==> homestead-7: �Ensure the guest is trusted to use this configuration or

update

==> homestead-7: the NIC type using one of the methods below:

==> homestead-7:

==> homestead-7: �https://www.vagrantup.com/docs/virtualbox/configuration.

html#default-nic-type

==> homestead-7: �https://www.vagrantup.com/docs/virtualbox/networking.

html#virtualbox-nic-type

==> homestead-7: Clearing any previously set network interfaces...

==> homestead-7: Preparing network interfaces based on configuration...

 homestead-7: Adapter 1: nat

 homestead-7: Adapter 2: hostonly

==> homestead-7: Forwarding ports...

 homestead-7: 80 (guest) => 8000 (host) (adapter 1)

 homestead-7: 443 (guest) => 44300 (host) (adapter 1)

 homestead-7: 3306 (guest) => 33060 (host) (adapter 1)

 homestead-7: 4040 (guest) => 4040 (host) (adapter 1)

 homestead-7: 5432 (guest) => 54320 (host) (adapter 1)

 homestead-7: 8025 (guest) => 8025 (host) (adapter 1)

 homestead-7: 27017 (guest) => 27017 (host) (adapter 1)

 homestead-7: 22 (guest) => 2222 (host) (adapter 1)

==> homestead-7: Running 'pre-boot' VM customizations...

==> homestead-7: Booting VM...

==> homestead-7: �Waiting for machine to boot. This may take a few minutes...

 homestead-7: SSH address: 127.0.0.1:2222

...

The process is not yet complete. It will fire up your Homestead development

environment application, and finally, you need to issue this command:

//code 2.32

ss@ss-H81M-S1:~/Homestead$ vagrant ssh

Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-38-generic x86_64)

* FYI Vagrant v2.2.2 & Virtualbox:

 * https://twitter.com/HomesteadDev/status/1071471881256079362

Chapter 2 Setting Up Your Environment

34

259 packages can be updated.

73 updates are security updates.

Last login: Sat Jan 12 05:18:55 2019 from 10.0.2.2

vagrant@homestead:~$ cd code/larastartofinish/

As shown in the previous code, you can now access your /home/ss/code/

larastartofinish project through the sites property of Homestead. The /vagrant/

code directory communicates with the /home/ss/code/larastartofinish project,

where you have installed one Laravel application. I will discuss how to start the Laravel

application in the next section. Before that, I would like to give you some tips about the

database functionalities.

�Homestead and MySQL
The Homestead development environment is actually a guest addition to your host

machine. So, you should not try to communicate with your host MySQL database from

the guest Homestead. Remember one key concept: Homestead has a lot of database

support. MySQL is the default database. The username is homestead, and the password

is secret. So, staying in the vagrant directory, vagrant@homestead:~$, you can just type

this:

//code 2.33

vagrant@homestead:~$ mysql -u homestead -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 5

Server version: 5.7.24-0ubuntu0.18.04.1 (Ubuntu)

Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights

reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input

statement.

Chapter 2 Setting Up Your Environment

35

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| homestead |

| larastartofinish |

| myappo |

| mysql |

| performance_schema |

| socket_wrench |

| sys |

+--------------------+

8 rows in set (0.08 sec)

mysql>

You can see, I have already created two databases in my Homestead MySQL database

in a driver. If you want to exit this terminal and shut down your Homestead development

environment, you can issue this command:

//code 2.34

mysql> exit

Bye

vagrant@homestead:~$ exit

logout

Connection to 127.0.0.1 closed.

ss@ss-H81M-S1:~/Homestead$ vagrant halt

==> homestead-7: Attempting graceful shutdown of VM...

ss@ss-H81M-S1:~/Homestead$

So, you have successfully installed and closed down your Homestead development

environment. If you want to access your MySQL database through a GUI, then consider

installing MySQL Workbench, as shown in Figure 2-1.

Chapter 2 Setting Up Your Environment

36

I have already installed a Laravel application in my Homestead development

environment and populated the database with some fake data. You can see the same

articles table in a browser at http://my.local/articles, as shown in Figure 2-2.

Figure 2-1.  MySQL Workbench

Chapter 2 Setting Up Your Environment

http://my.local/articles

37

In the next section, I will discuss how to create your first Laravel project in your

Homestead development environment.

Presuming you are about to learn Laravel from scratch, I will keep the next section

brief. I will discuss how you can start your project. Later, in the coming chapters, you

will learn how to build a database-driven application that will handle complex relations

between various tables, creating, updating, and deleting records. It will be a company/

project/task management system where users can also write articles or blog posts, write

reviews about the companies, and do much more. There will be many roles, such as

administrator, moderator, editor, and simple members or users who can register and log

into the application.

�How to Create a New Laravel Project
You’ll name your application larastartofinish. This is an abbreviation of the full

project name “Laravel Start to Finish.” The code directory will be mapped to the

Homestead development environment. So, from now on, you will install your Laravel

applications there.

Figure 2-2.  Your first Laravel project

Chapter 2 Setting Up Your Environment

38

Staying in the /home/ss/code directory, you can install your Laravel application by

issuing this command:

//code 2.35

$ composer create-project --prefer-dist laravel/laravel larastartofinish

This will install a fresh Laravel application in your /home/ss/code directory. Next,

issue the following command for macOS/Linux in a terminal:

//code 2.36

$ sudo rm -rf vendor/ composer.lock

Basically, you have removed the Laravel dependencies that ship with

Laravel, because you need to freshly install the new dependencies for your new

larastartofinish application. So, issue this command:

//code 2.37

$ composer install

This will again install the necessary vendor folder and composer.lock file. You have

successfully installed a new Laravel application in the /home/ss/code directory. Now

you can start your Homestead development environment and start working on this

application.

Staying in the Homestead folder, issue the following command:

vagrant up --provision

Next, issue the following command to start your Homestead development

environment:

vagrant ssh

Then, change your directory like this so that it points to the /home/ss/code/

larastartofinish directory:

//code 2.38

vagrant@homestead:~$ cd code/larastartofinish/

Chapter 2 Setting Up Your Environment

39

Next, you do not need to start your local server here. The advantage of Homestead

is that now you can type http://my.local in your browser and view your new Laravel

application. Next, you can create your first controller here by issuing this command:

//code 2.39

vagrant@homestead:~/code/larastartofinish$ php artisan make:controller

ArticleController --resource –model=Article

Controller created successfully.

This will create an Article controller, which is related to the Article model.

So, you can now successfully start working on your Homestead development

environment using VirtualBox and Vagrant.

In the next chapter, you will start building this application from scratch and also

learn how the route, controller, template, and view work.

Chapter 2 Setting Up Your Environment

http://my.local

41
© Sanjib Sinha 2019
S. Sinha, Beginning Laravel, https://doi.org/10.1007/978-1-4842-4991-8_3

CHAPTER 3

Routing, Controllers,
Templates, and Views
In the previous two chapters, you learned how to create your environment so that you

can use Composer to install fresh Laravel applications, and you learned many more

other nitty-gritty details of Laravel. You also are now familiar with the concepts of the

Model-View-Controller (MVC) logic system.

In this chapter, you will learn how Laravel follows the MVC pattern.

To enter an application, you need to have an entry point. The basic algebraic

definition of function works here: you give input to a function, and you get output. When

applying this to Laravel, you can replace the word input with request and replace the

word output with response.

To start creating a Laravel application, the web.php file in the routes directory is

important. It takes the requests from you, the user, and sends them to either a closure

that gives a response, a view page that displays the response, or a controller that does

the same thing; in some critical cases, the controller consults with the model and then is

updated by the business logic.

You will learn all about this mechanism in this chapter.

�Route Definitions
Laravel must know how to respond to a particular request, which relates to the concept

of routing. Here is a basic example of routing a request:

//code 3.1

//routes/web.php

Route::get('/', function () {

 return view('welcome');

});

42

In this example, the Laravel route accepts a URI through the HTTP GET method

using a closure. The closure (also called an anonymous function) returns a view page. I

will come back to that in a minute, but I need to point out one more thing here: the Route

class uses a static method, which is a class-level method. Why does it not use an instance

of Route? This is because a class-level variable consumes less memory than objects,

whereas an object, once instantiated, starts consuming memory. This is an important

concept of object-oriented programming.

This file defines the application’s URL endpoints so Laravel knows how to respond

to that request. Here the URI is the document root or home page, and the Closure or

anonymous function returns a view that contains an HTML page. These views are called

view pages, and they are based on the Blade template engine that Laravel ships with.

This is a simple and expressive method of defining routes where models and

controllers are absent. However, in a real-world scenario, you keep controllers between

models and views, and the routes are initiated by the controllers. You will see an example

of that in a few minutes.

You could have written the previous code in this way:

//code 3.2

//routes/web.php

Route::get('/', 'WelcomeController@index');

In the previous code, inside the welcome controller’s index method, you can return

the same view.

�How to Find the Default Route Files
The Laravel framework automatically loads the route files in the routes directory. For

the web interface, the routes/web.php file defines the routes. In Chapter 3, you will see

how these routes are assigned to the web middleware group. Actually, route provides

many features such as session state and CSRF protection. There is another middleware

group, called api. I will also discuss this group later in this chapter.

In most cases, you will start by using this routes/web.php file. However, using

closures is not a workable option. In some special cases, you will definitely use

closures, but you will normally use a dedicated controller to manage a connected

resource, as I showed in the previous code snippet.

Chapter 3 Routing, Controllers, Templates, and Views

43

Let’s think about a TaskController. This controller might retrieve all tasks. It gets

all tasks views, inserts a new task, edits and updates an existing task, and finally deletes

an existing list from the database.

�Route and RESTful Controller
Since you will normally use a dedicated controller to manage a connected resource,

the concept of RESTful or resourceful controllers applies here. In the “Resourceful

Controller” section, I will discuss resourceful controllers in more detail, but before that,

all you need to know is that a RESTful or resourceful controller can handle all seven

routes associated with it. For now, you should know that when you use a create-read-

update-delete (CRUD) approach, you use HTTP methods such as GET, POST, PUT, and

DELETE. How do you get seven routes from this? Well, you use GET four times: to show

all content, to show a form to create new content, to show a particular piece of content

(ideally getting that by its ID), and finally to show the edit form to update the content.

You can write a route like this:

//code 3.3

//routes/web.php

Route::resource('tasks', 'TaskController');

Now, you can view all the tasks by typing http://example.com/tasks in your

browser because the controller is waiting for the request and is programmed to display

all the tasks.

What does the term RESTful mean? There is a fundamental difference between
a web application and a REST API. When you get the response from a web
application, it generally consists of HTML, CSS, and JavaScript. On the other hand,
the REST API returns data in the form of JSON or XML. As you progress, you will
learn more about the close relationship between Laravel and JSON output.

�How to List All Routes
In a large application, it is quite cumbersome to maintain a list of all the routes. There

might be hundreds of routes, and they are connected to dedicated resources with

separate business logic.

Chapter 3 Routing, Controllers, Templates, and Views

http://example.com/tasks

44

Laravel has made it easy to list all routes by using a single command. I will show

you one small application where I have maintained a few controllers and view pages.

There is an administrator section, and I can create, retrieve, update, and delete (CRUD)

articles through that admin panel, and I can also add some tasks. For doing these simple

operations, I have created three controllers and made them all resourceful. Now if you

issue a single command to get the route lists, like this:

//code 3.4

$ php artisan route:list

it will give you some output like Figure 3-1.

Figure 3-1.  List of all routes in an application

Figure 3-1 shows a table where the column names are Method, URI, Name, Action,

and Middleware. In the following code, you will see the method name first, which is

either GET, POST, PUT, or DELETE. After that, you will see the URI, such as /adminpage;

next comes the view page names like adminpage.show. This is followed by the action or

controller methods, like AdminController@index, and at the end comes the middleware.

I will talk about the middleware later in the book in great detail.

Chapter 3 Routing, Controllers, Templates, and Views

45

ss@ss-H81M-S1:~/code/twoprac/freshlaravel57$ php artisan route:list

+--------+-----------+----------------------------+-------------------+

--+

--------------+

| Domain | Method | URI | Name |

Action

| Middleware |

+--------+-----------+----------------------------+-------------------+

--+

--------------+

| | GET|HEAD | / | |

Closure

| web |

| | GET|HEAD | adminpage | adminpage.index |

App\Http\Controllers\AdminController@index

| web,auth |

| | POST | adminpage | adminpage.store |

App\Http\Controllers\AdminController@store

| web,auth |

| | GET|HEAD | adminpage/create | adminpage.create |

App\Http\Controllers\AdminController@create

| web,auth |

| | DELETE | adminpage/{adminpage} | adminpage.destroy |

App\Http\Controllers\AdminController@destroy

| web,auth |

| | PUT|PATCH | adminpage/{adminpage} | adminpage.update |

App\Http\Controllers\AdminController@update

| web,auth |

| | GET|HEAD | adminpage/{adminpage} | adminpage.show |

App\Http\Controllers\AdminController@show

| web,auth |

| | GET|HEAD | adminpage/{adminpage}/edit | adminpage.edit |

App\Http\Controllers\AdminController@edit

| web,auth |

Chapter 3 Routing, Controllers, Templates, and Views

46

| | GET|HEAD | api/user | |

Closure

| api,auth:api |

| | POST | articles | articles.store |

App\Http\Controllers\ArticleController@store

| web,auth |

| | GET|HEAD | articles | articles.index |

App\Http\Controllers\ArticleController@index

| web,auth |

| | GET|HEAD | articles/create | articles.create |

App\Http\Controllers\ArticleController@create

| web,auth |

| | PUT|PATCH | articles/{article} | articles.update |

App\Http\Controllers\ArticleController@update

| web,auth |

| | GET|HEAD | articles/{article} | articles.show |

App\Http\Controllers\ArticleController@show

| web,auth |

| | DELETE | articles/{article} | articles.destroy |

App\Http\Controllers\ArticleController@destroy

| web,auth |

| | GET|HEAD | articles/{article}/edit | articles.edit |

App\Http\Controllers\ArticleController@edit

| web,auth |

| | GET|HEAD | home | home |

App\Http\Controllers\HomeController@index

| web,auth |

| | GET|HEAD | login | login |

App\Http\Controllers\Auth\LoginController@showLoginForm

| web,guest |

| | POST | login | |

App\Http\Controllers\Auth\LoginController@login

| web,guest |

| | POST | logout | logout |

App\Http\Controllers\Auth\LoginController@logout

| web |

Chapter 3 Routing, Controllers, Templates, and Views

47

| | POST | password/email | password.email |

App\Http\Controllers\Auth\ForgotPasswordController@sendResetLinkEmail

| web,guest |

| | GET|HEAD | password/reset | password.request |

App\Http\Controllers\Auth\ForgotPasswordController@showLinkRequestForm

| web,guest |

| | POST | password/reset | password.update |

App\Http\Controllers\Auth\ResetPasswordController@reset

| web,guest |

| | GET|HEAD | password/reset/{token} | password.reset |

App\Http\Controllers\Auth\ResetPasswordController@showResetForm

| web,guest |

| | GET|HEAD | register | register |

App\Http\Controllers\Auth\RegisterController@showRegistrationForm

| web,guest |

| | POST | register | |

App\Http\Controllers\Auth\RegisterController@register

| web,guest |

| | POST | tasks | tasks.store |

App\Http\Controllers\TaskController@store

| web,auth |

| | GET|HEAD | tasks | tasks.index |

App\Http\Controllers\TaskController@index

| web |

| | GET|HEAD | tasks/create | tasks.create |

App\Http\Controllers\TaskController@create

| web,auth |

| | GET|HEAD | tasks/{task} | tasks.show |

App\Http\Controllers\TaskController@show

| web |

| | DELETE | tasks/{task} | tasks.destroy |

App\Http\Controllers\TaskController@destroy

| web,auth |

| | PUT|PATCH | tasks/{task} | tasks.update |

App\Http\Controllers\TaskController@update

| web,auth |

Chapter 3 Routing, Controllers, Templates, and Views

48

| | GET|HEAD | tasks/{task}/edit | tasks.edit |

App\Http\Controllers\TaskController@edit

| web,auth |

| | GET|HEAD | user | |

Closure

�Creating Controllers, Views, and Managing Routes
I have already pointed out why you need a controller. You cannot define all of your

request handling logic as closures in route files. Instead, you can organize this action

using controller classes. Controller class group related request handling logic into a

single class. You can create a controller quite easily by keeping the connected resources

in mind. Controllers can be stored in the app/Http/Controllers directory.

Let’s create a controller first, as shown here:

//code 3.5

$ php artisan make:controller TaskController --resource

//the output of code 3.5

Controller created successfully.

This is what the app/Http/Controllers/TaskController.php file looks like:

//code 3.6

// app/Http/Controllers/TaskController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

class TaskController extends Controller

{

 /**

 * Display a listing of the resource.

 *

 * @return \Illuminate\Http\Response

 */

Chapter 3 Routing, Controllers, Templates, and Views

49

 public function index()

 {

 //

 }

 /**

 * Show the form for creating a new resource.

 *

 * @return \Illuminate\Http\Response

 */

 public function create()

 {

 //

 }

 /**

 * Store a newly created resource in storage.

 *

 * @param \Illuminate\Http\Request $request

 * @return \Illuminate\Http\Response

 */

 public function store(Request $request)

 {

 //

 }

 /**

 * Display the specified resource.

 *

 * @param int $id

 * @return \Illuminate\Http\Response

 */

 public function show($id)

 {

 //

 }

Chapter 3 Routing, Controllers, Templates, and Views

50

 /**

 * Show the form for editing the specified resource.

 *

 * @param int $id

 * @return \Illuminate\Http\Response

 */

 public function edit($id)

 {

 //

 }

 /**

 * Update the specified resource in storage.

 *

 * @param \Illuminate\Http\Request $request

 * @param int $id

 * @return \Illuminate\Http\Response

 */

 public function update(Request $request, $id)

 {

 //

 }

 /**

 * Remove the specified resource from storage.

 *

 * @param int $id

 * @return \Illuminate\Http\Response

 */

 public function destroy($id)

 {

 //

 }

}

Chapter 3 Routing, Controllers, Templates, and Views

51

There are seven methods that you need to create a CRUD system for your connected

resources. Here the connected resources are the Task model, through which you will

handle your database and business logic. The other parts of resources are your related

views page through which you will handle all types of front-end operations such as

showing tasks and creating, editing, and deleting your tasks.

While creating the TaskController, I have added an extra parameter called

--resource. Because of that parameter, I get all seven CRUD methods in my

TaskController. I could have created them manually, but Laravel takes care of creating

them automatically because I passed that parameter while creating the Controller

class.

Now, in your routes/web.php file, you can address all associated routes in a single

line of code, as shown here:

//code 3.7

//routes/web.php

Route::resource('tasks', 'TaskController');

�CRUD and the Seven Methods
The single line of code shown previously handles all seven methods created by default in

the TaskController class.

If you issue the php artisan route:list command, you will see the related URIs,

names, actions, and methods.

Let’s check it out. All seven methods, URIs, and names (related view pages) are as

follows:

| GET|HEAD | tasks | tasks.index

| POST | tasks | tasks.store |

| GET|HEAD | tasks/create | tasks.create |

| GET|HEAD | tasks/{task} | tasks.show |

| DELETE | tasks/{task} | tasks.destroy |

| PUT|PATCH | tasks/{task} | tasks.update |

| GET|HEAD | tasks/{task}/edit

Let’s try to understand how it works. When you type a URI like http://example.com/

tasks in your browser, The ‘task resource’ sends the GET requests. The index.blade.

php page belonging to the resources/views/tasks folder displays all tasks.

Chapter 3 Routing, Controllers, Templates, and Views

http://example.com/tasks
http://example.com/tasks

52

The third method is a GET, and the URI is http://example.com/tasks/create. It

will display a form in the create.blade.php page belonging to the resources/views/

tasks folder. Here you will fill up all the related fields and hit the Submit button. Once

you do that, the second method will start acting. That is the POST, and you do not need

to have the store.blade.php file. Laravel handles this POST request automatically in the

TaskController class.

And it goes on like this.

To get a complete view, you need to see what your final TaskController.php file

looks like, as shown here:

//code 3.8

// app/Http/Controllers/TaskController.php

<?php

namespace App\Http\Controllers;

use App\Task;

use Illuminate\Support\Facades\Auth;

use Illuminate\Http\Request;

class TaskController extends Controller

{

 /**

 * Create a new controller instance.

 *

 * @return void

 */

 public function __construct()

 {

 $this->middleware('auth')->except('index', 'show');

 }

 /**

 * Display a listing of the resource.

 *

 * @return \Illuminate\Http\Response

 */

Chapter 3 Routing, Controllers, Templates, and Views

http://example.com/tasks/create

53

 public function index()

 {

 //

 $tasks = Task::get();

 return view('tasks.index', compact('tasks'));

 }

 /**

 * Show the form for creating a new resource.

 *

 * @return \Illuminate\Http\Response

 */

 public function create()

 {

 //

 if(Auth::user()->is_admin == 1){

 return view('tasks.create');

 }

 else {

 return redirect('home');

 }

 }

 /**

 * Store a newly created resource in storage.

 *

 * @param \Illuminate\Http\Request $request

 * @return \Illuminate\Http\Response

 */

 public function store(Request $request)

 {

 //

 if(Auth::user()->is_admin == 1){

Chapter 3 Routing, Controllers, Templates, and Views

54

 $post = new Task;

 $post->title = $request->input('title');

 $post->body = $request->input('body');

 $post->save();

 if($post){

 return redirect('tasks');

 }

 }

 }

 /**

 * Display the specified resource.

 *

 * @param int $id

 * @return \Illuminate\Http\Response

 */

 public function show($id)

 {

 //

 $task = Task::findOrFail($id);

 return view('tasks.show', compact('task'));

 }

 /**

 * Show the form for editing the specified resource.

 *

 * @param int $id

 * @return \Illuminate\Http\Response

 */

 public function edit($id)

 {

 //

 if(Auth::user()->is_admin == 1){

 $task = Task::findOrFail($id);

 return view('tasks.edit', compact('task'));

Chapter 3 Routing, Controllers, Templates, and Views

55

 }

 else {

 // code...

 return redirect('home');

 }

 }

 /**

 * Update the specified resource in storage.

 *

 * @param \Illuminate\Http\Request $request

 * @param int $id

 * @return \Illuminate\Http\Response

 */

 public function update(Request $request, $id)

 {

 //

 if(Auth::user()->is_admin == 1){

 $post = Task::findOrFail($id);

 $post->title = $request->input('title');

 $post->body = $request->input('body');

 $post->save();

 if($post){

 return redirect('tasks');

 }

 }

 }

 /**

 * Remove the specified resource from storage.

 *

 * @param int $id

 * @return \Illuminate\Http\Response

 */

Chapter 3 Routing, Controllers, Templates, and Views

56

 public function destroy($id)

 {

 //

 }

}

In the previous code, I skipped the destroy method, but it should give you an idea of

how you can associate your controller class to a connected resource.

At the same time, you need to see the Task model and the database table that you

have created so that this connection between the Model-Controller-View is complete.

First, while creating a model, you pass an extra parameter, -m, so that the database

migration takes place automatically. Laravel creates the primary task and database table.

(Of course, you can create them separately too.) While creating a connected resource

with a controller class, it is a good idea to create the table with the Task model.

//code 3.9

//creating Task model and database table

$ php artisan make:model Task -m

Model created successfully.

Created Migration: 2019_02_16_041652_create_tasks_table

Now, you have successfully created the model and created the migration.

For brevity, I have kept this model and the migration tasks table quite simple. So, to

create a model and related database table, you need to issue the command php artisan

make:model Task -m. Only after that are the model and the related database table

created.

Here is what the Task model looks like:

//code 3.10

//app/Task.php

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Task extends Model

{

 //

Chapter 3 Routing, Controllers, Templates, and Views

57

 protected $fillable = [

 'title', 'body'

];

}

After running the previous command, you get a task table in the database/

migration folder. Now you can add more functionality to that table by adding new

columns. After the modification, you will issue another command so that Laravel knows

that it should take the necessary steps to modify it.

You can modify the database migration tasks table as follows:

//code 3.11

// database/migrations/tasks table

<?php

use Illuminate\Support\Facades\Schema;

use Illuminate\Database\Schema\Blueprint;

use Illuminate\Database\Migrations\Migration;

class CreateTasksTable extends Migration

{

 /**

 * Run the migrations.

 *

 * @return void

 */

 public function up()

 {

 Schema::create('tasks', function (Blueprint $table) {

 $table->increments('id');

 $table->string('title');

 $table->text('body');

 $table->timestamps();

 });

 }

 /**

 * Reverse the migrations.

 *

Chapter 3 Routing, Controllers, Templates, and Views

58

 * @return void

 */

 public function down()

 {

 Schema::dropIfExists('tasks');

 }

}

Now, your route, model, controller, and view circle is complete. You will learn how

each of these components works in later chapters. Understand that you should have the

resources as separate as possible. They must be loosely coupled so that each controller

has a connected model and view pages.

�Models Acts as a Resource
Now through the Model class you can build bridges to the other parts of your application.

But that is a different thing. I will discuss later how Eloquent relationships work and how

each database table communicates with each other.

In the code for the TaskController class (code 3.8), you saw lines like this:

//code 3.12

public function __construct()

 {

 $this->middleware('auth')->except('index', 'show');

 }

The TaskController class opens up its two methods (index and show) only for

guests or the public. To operate other methods, you need to be an authenticated user,

and then you can also apply authorization and all the other related middleware actions.

In the “Authentication, Authorization, and Middleware” Chapter 8, I will discuss the

methodologies behind the TaskController class. Until then, know that through your

Controller class you can control your entire application. The greatness of Laravel is that

it also gives you ample chances to control your application through other parts, such as

your route file, view page, and the model.

Now, if you type http://localhost:8000/tasks in your browser, you will see the

page in Figure 3-2.

Chapter 3 Routing, Controllers, Templates, and Views

59

In the next section, you will see how resourceful controllers come to your rescue

while you try to maintain a separation of concerns.

And if you click the second task, you will see the view page shown in Figure 3-3.

Figure 3-2.  Showing all tasks

Chapter 3 Routing, Controllers, Templates, and Views

60

Now go to http://localhost:8000/tasks/3, which is the third task. In the

TaskController class, the method is show.

Remember this part of the file TaskController.php:

//code 3.13

public function show($id)

 {

 //

 $task = Task::findOrFail($id);

 return view('tasks.show', compact('task'));

 }

This actually returns show.blade.php belonging to the resources/views/tasks

folder, and the code snippet I have used there looks like this:

//code 3.14

// resources/views/tasks/show.blade.php

<div class="card-body">

Figure 3-3.  The third task

Chapter 3 Routing, Controllers, Templates, and Views

61

 {{ $task->title }}

 </div>

 <div class="card-body">

 {{ $task->body }}

 </div>

I will discuss this part in a moment, so please keep reading.

�Models Act As Resources
I would like to mention one thing: the TaskController class manages the task

resource in such a way that you can view the index.blade.php and show.blade.php

pages without being authenticated. However, you can do that in other parts of the

same resource.

Suppose you want to type this URI: http://localhost:8000/tasks/create. This will

take you to the login page. See Figure 3-4.

Figure 3-4.  The login page

Chapter 3 Routing, Controllers, Templates, and Views

62

Why does this happen?

Remember this part of TaskController.php:

//code 3.15

public function create()

 {

 //

 if(Auth::user()->is_admin == 1){

 return view('tasks.create');

 }

 else {

 return redirect('home');

 }

 }

This clearly states that if the user is not admin, they cannot view this page. Otherwise,

it redirects the user to the home page, which again redirects back to the login page.

I hope that you can now follow the logic behind Laravel’s routes, controller, model,

and view mechanism. In the route lists, you can see how these components are related to

each other. For each request, whether that be GET or POST, Laravel handles it nicely and

relates it to the respective URI. Then that URI fires up the respective RESTful Controller

method, and that takes you to the respective view page.

In the next section, you will see how the RESTful or resourceful controller

encapsulates those URI requests in a single line.

�Resourceful Controllers
With a single line of code, how can you handle a typical CRUD route to a controller?

Laravel’s resource routing is the answer. You want to store every task in your database.

You want to edit and update every task. You want to create a controller that handles all

HTTP requests for tasks stored by your application.

You have already created the resource TaskController that way, and you have seen

how it contains a method for each of the available resource operations. Next, you have

registered a route to that controller, as shown here:

 Route::resource('tasks', 'TaskController');

Chapter 3 Routing, Controllers, Templates, and Views

63

Now, this single route declaration creates multiple routes to handle a variety of

actions on the resource. If you open the app/HTTP/Controllers/TaskController.php

file, you will find that each of these actions has related notes informing you of the HTTP

verbs and URIs they handle.

Let’s see one example of the index method:

//code 3.16

// app/HTTP/Controllers/TaskController.php

/**

 * Display a listing of the resource.

 *

 * @return \Illuminate\Http\Response

 */

 public function index()

 {

 $tasks = Task::get();

 return view('tasks.index', compact('tasks'));

 }

This clearly states “Display a listing of the resource.” At the same time, if you watch

the route listing (shown next), you will find for the action App\Http\Controllers\

TaskController@index that the name is tasks.index (this means the index.blade.php

file belonging to the tasks folder). The method is GET, and the URI is tasks. This means

if you type the URI http://localhost:8000/tasks, you will view all the tasks.

You can write all actions handled by the resource TaskController in one place in

this way:

//code 3.17

Method | URI | Action | Route Name

----------|-----------------------|--------------|---------------------

GET | 'tasks' | index | tasks.index

GET | 'tasks/create' | create | tasks.create

POST | 'tasks' | store | tasks.store

GET | 'tasks/{task}' | show | tasks.show

GET | 'tasks/{task}/edit' | edit | tasks.edit

PUT/PATCH | 'tasks/{task}' | update | tasks.update

DELETE | 'tasks/{task}' | destroy | tasks.destroy

Chapter 3 Routing, Controllers, Templates, and Views

64

�The Importance of the Resourceful Controller
Creating controllers in Laravel is simple. In an MVC pattern, controllers play a vital role,

and defining all your request handling logic as an anonymous function in a route file is

not a viable solution for a big application. So, you will always use controllers as a transport

medium. The main advantage of a controller is that it can group all the request handling

into a single class, and that class can be stored in the app/HTTP/Controllers directory.

Another advanced feature is that you can register many resource controllers at once

by passing an array to the resources method. It looks like this:

 Route::resources([

 'myfiles' => 'MyController',

 'moreactions' => 'MoreController'

]);

A resourceful controller uses many types of HTTP verbs at the same time, such as

GET, POST, PUT/PATCH, and DELETE. By using the GET verb, you can access four

action methods in the controller; they are index, create, show, and edit. The action

methods in the controller handle the route names of the same name; for example, the

index action would handle a URI like /myfiles and a route name of myfiles.index.

The create and edit actions only show web forms, so the GET verb is perfect for them.

You need a POST verb or method for the store action because you are sending

data to the app, and behind the scenes, the Laravel service container (I will discuss

this later in detail) takes the trouble to go through the model to insert new data in the

related database table. The URI remains the same as index, like /myfiles, but the action

method changes to store, and the route name also changes to myfiles.store. The

HTTP verb PUT/PATCH is used for updating only a single record. Therefore, the URI

changes to /myfiles/{myfile}, the action method changes to update, and the Route

name changes to myfiles.update.

�How to Supplement the Resource Controller
Sometimes you may want to add routes to a resource controller. A resource controller

always handles a default set of resource routes; however, you may want a few more like this:

//code 3.18

Route::get('tasks/important', 'TaskController@important');

Chapter 3 Routing, Controllers, Templates, and Views

65

Of course, your resource controller will never create an extra method like this. You

need to add it manually. However, you need to register this route before the resource

route. Otherwise, the resource route will take precedence. In the routes/web.php file,

you should write these lines of code:

//code 3.19

Route::get('tasks/important', 'TaskController@important');

Route::resource('tasks', 'TaskController');

However, you should keep your controller focused, and to do that, my suggestion is

that it is better to maintain several small controllers so you don’t have to juggle with the

position in your route file.

�Getting User Input and Dependency Injection
The Laravel service container is used to resolve all Laravel controllers. This means that

when you create a resource controller, method injection normally occurs. How does this

work?

It’s simple. Just take a look at these lines of code in your TaskController store

method:

//code 3.20

 public function store(Request $request)

 {

 if(Auth::user()->is_admin == 1){

 $post = new Task; �$post->title = $request-

>input('title');

 $post->body = $request->input('body');

 $post->save();

 if($post){

 return redirect('tasks');

 }

 }

 }

Chapter 3 Routing, Controllers, Templates, and Views

66

The $request object from \Illuminate\Http\Request has automatically been

injected and resolved by Laravel’s service container. Behind the scenes, a form is sending

data, and you can get the following code as a result:

$post->title = $request→input('title');

When you are going to edit any task item, the same thing takes place in the update

method.

//code 3.21

 public function update(Request $request, $id)

 {

 if(Auth::user()->is_admin == 1){

 $post = Task::findOrFail($id);

 $post->title = $request->input('title');

 $post->body = $request->input('body');

 $post->save();

 if($post){

 return redirect('tasks');

 }

 }

 }

Here, you may ask, how does Laravel know the wildcard reference or input variable

$id along with the Request $request object? This happens through the Reflection class

that Laravel uses to guess what you are type hinting, and this is called method injection.

Basically, you could have passed the parameter’s Model object as ' instead of

$id; however, since through the edit form you have passed $id, Laravel resolves the

dependencies and injects it into the controller instance in place of '.

The position of the $id along with the Request $request object is interchangeable.

Laravel is smart enough to read the wildcard entry and the $request object here. So, you

can type hint the dependencies on your controller methods. The most common use case

is the injection of the Illuminate\Http\Request instance.

If your controller method expects input from a route parameter, as happens in the

update case where you want to catch the $id of the item you want to edit, behind the

resource controller, you have a route like this:

Route::put('task/{id}', 'TaskController@update');

Chapter 3 Routing, Controllers, Templates, and Views

67

You can also type hint any dependencies your controller may need in the

constructor. The declared dependencies will automatically be resolved and injected into

the controller instance. Suppose you have a user repository in the app/Repositories

folder like this:

//code 3.22

//app/Repositories/DBUserRepository.php

<?php namespace RepositoryDB;

use RepositoryInterface\UserRepositoryInterface as UserRepositoryInterface;

use App\User;

use Illuminate\Http\Request;

class DBUserRepository implements UserRepositoryInterface {

 public function all() {

 return User::all();

 }

}

You also have the app/Repositories/Interfaces folder, where you have your

respective interface that looks like this:

//code 3.23

//app/Repositories/Interfaces/UserRepositoryInterface.php

<?php namespace RepositoryInterface;

 interface UserRepositoryInterface {

 public function all();

}

Now you can inject your dependencies into your UserController constructor quite

easily. I have type hinted the contract (here UserRepositoryInterface), and the Laravel

container has resolved it successfully.

//code 3.24

//app/HTTP/Controllers/UserController.php

class UserController extends Controller {

 public $users;

 public function __construct(DBUserRepository $users) {

Chapter 3 Routing, Controllers, Templates, and Views

68

 $this->users = $users;

 }

...//code continues

}

The instance of DBUserRepository always provides better testability.

�How a Blade Template Works with Controllers
and Models
Blade is a simple yet powerful template engine. It reduces the workload of the front-end

staff drastically. With Blade templates, you can also use PHP code. Besides, it has its own

PHP syntax, which is extremely easy to use.

The advantage of Blade views is that they come with automatic caching. All Blade

view pages are compiled into plain PHP code and cached until you modify them. This

means zero overhead for the application.

You can create any Blade view page with a .blade.php extension, and they should

be stored inside the resources/views folder. For a large application, you may create

separate folders for each resource and keep your view pages inside that. Likewise, I have

kept my Task resource view pages inside the resources/views/tasks folder.

Two basic benefits of Blade are template inheritance and sections.

For the Task resource, you are using the default resources/views/layouts/app.

blade.php file here. So, the resources/views/tasks/index.blade.php file is a simple

view page that outputs the tasks.

//code 3.25

//resources/views/tasks/index.blade.php

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="row justify-content-center">

 <div class="col-md-8">

 <div class="card">

 <div class="card-header">Task Page</div>

 <div class="card-body">

 @foreach($tasks as $task)

Chapter 3 Routing, Controllers, Templates, and Views

69

 id }}">

 {{ $task->title }}

 <p></p>

 @endforeach

 </div>

 </div>

 </div>

 </div>

</div>

@endsection

As you see, you can easily connect your view page to the master layout page by

writing the following on the top of the page: @extends('layouts.app'). In between

@section('content') and @endsection, you insert the content part. Basically, you are

following the DOM object model for displaying the HTML page. It starts on the top and

flows down to the end.

The master layout Blade page should have the header and the footer. If there is

any fixed sidebar, according to the Bootstrap theme, you can include that also. If you

create a simple master layout Blade page, it will look like the app.blade.php file in your

resources/views/layouts folder, as shown here:

//code 3.26

 <html>

 <head>

 <title>App Name - @yield('title')</title>

 </head>

 <body>

 <div class="container">

 @yield('content')

 </div>

 </body>

 </html>

Chapter 3 Routing, Controllers, Templates, and Views

70

The @yield('content') part uses your index.blade.php page content. In the

default app.blade.php page, that part is included like this:

<main class="py-4">

 @yield('content')

 </main>

But I have overwritten the default app.blade.php page to make it simple to

understand. When Laravel installs, it comes with a default app.blade.php view page in

the resources/views/layouts folder.

The @section and @yield directives are there with the typical HTML markup. The

@section directive defines a section of content. Here, the @yield directive is used to

display the contents of a given section.

�Security in Blade
In any Blade view page, you usually get the data inside curly braces: {{ $data->body }}'.

These statements are automatically sent through PHP’s htmlspecialchars function to

avoid XSS attacks so that the data is escaped.

If you do not want to escape data, then use this syntax: {!! $data->body !!}. But, be

careful about the user’s input. It is always a good practice to escape data supplied by users.

The user’s input data should be displayed using double curly braces: {{ $user->data }}'.

�Authentication Through Blade
You can check whether the user is an administrator in the Blade view page, as shown here:

//code 3.27

 @foreach ($users as $user)

 @if ($user->admin == 1)

 @continue

 @endif

 {{ $user->name }}

 @if ($user->number == 1)

 @break

 @endif

 @endforeach

Chapter 3 Routing, Controllers, Templates, and Views

71

You can also check whether the user is a registered member with this simple

method:

//code 3.28

 @auth

 // The user is authenticated...

 @endauth

 @guest

 // The user is not authenticated...

 @endguest

In Chapter 8, I will discuss the guard; however, in the Blade view page, you can use it

directly like this:

//code 3.29

 @auth('admin')

 // The user is authenticated...

 @endauth

 @guest('admin')

 // The user is not authenticated...

 @endguest

�Control Structures in Blade
You have already seen how you can manage looping through a Blade template; you can

put control structures in any Blade view page like this:

//code 3.30

@if (count($users) === 1)

 I have one user!

 @elseif (count($users) > 1)

 I have multiple users!

 @else

 I don't have any users!

 @endif

Chapter 3 Routing, Controllers, Templates, and Views

72

Take a look at the following example where the @unless directive makes

authentication much simpler:

//code 3.31

 @unless (Auth::check())

 You are not signed in.

 @endunless

�Other Advantages of Blade Templates
You can also use the PHP isset function in a more convenient way like this:

//code 3.32

 @isset($images)

 // $images is defined and is not null...

 @endisset

 @empty($images)

 // $images is 'empty'...

 @endempty

You have already seen how you can use the foreach loop for getting records straight

out of the database tables; in addition, you can restrict the number of records in the view

page instead of doing this inside the controller. You can even choose which records to

show.

//code 3.33

@foreach ($users as $user)

 @if ($user->id == 1)

 @continue

 @endif

 {{ $user->name }}

 @if ($user->id == 3)

 @break

 @endif

 @endforeach

Chapter 3 Routing, Controllers, Templates, and Views

73

You have four registered users. The output is as follows:

//output of code 3.34

• ss

• admin

In this case, when the loop finds that the ID is 1, it continues. After that, when the

code reaches the second user, the loop stops and spits out the first two users’ names, and

after that it stops and breaks out from the loop when it finds the third user.

You can manipulate your database records by managing the control structures in the

Blade view pages. And in such cases, Laravel allows you to do that without touching the

models and controllers. This is a big advantage of using Laravel.

Chapter 3 Routing, Controllers, Templates, and Views

75
© Sanjib Sinha 2019
S. Sinha, Beginning Laravel, https://doi.org/10.1007/978-1-4842-4991-8_4

CHAPTER 4

Working with Models
The model is the most critical part of any web application; you could even call it the

“brain” of your application. A good web application will be model-centric, with each

resource being a representation of the model. In other words, the model sets the

business logic for every resource, such as user, task, and so on.

In Laravel, you will usually use Eloquent ORM when building applications. Eloquent

is a simple yet beautiful ActiveRecord implementation for working with a database.

Each database table has a corresponding model, and without this model, you cannot

query the data in the database table. Not only that, but the model plays a pivotal role in

building relations between different tables.

For this reason, a model is also called an Eloquent model, and you use a flag like

--migration, or simply --m, while creating a model through the terminal. In the previous

chapter, you saw how to create a Task model along with the tasks table. You also have

used a TaskController to manage the task resource. In the next sections, you will see

how you can create tasks, and you will also see how you can use route model binding to

edit your task resource.

�Route Model Binding: Custom and Implicit
A model is of no use if you don’t have any underlying table associated with it. In a larger

sense, you will often have a database query related to a model representing the resource.

A query, whether it handles all records of a table or a single record, always points to one

or many IDs. Whenever you perform a database operation, you actually do it through

the model. Let’s consider the TaskController show method to display the specified

resource, as shown here:

//code 4.1

//app/HTTP/Controllers/TaskController.php

 public function show($id)

76

 {

 $task = Task::findOrFail($id);

 return view('tasks.show', compact('task'));

 }

Here you inject a model ID to this controller action to retrieve the model that

corresponds to that ID.

Now if you issue the php artisan route:list command, you will see the following

output for this particular action:

GET|HEAD | tasks/{task} | tasks.show | App\Http\

Controllers\TaskController@show

In the previous output, you can see that Method is GET, URI is tasks/{task}, and Name

is tasks.show. This means the view Blade page is show.blade.php, and it belongs to the

tasks folder. Finally, Action is App\Http\Controllers\TaskController@show.

This means Laravel has automatically injected the model instances directly into

the routes. The route lists show that you can inject an entire Task model instance that

matches the given ID.

This route model binding is best understood when you use the form template in

edit.blade.php belonging to the resources/views/tasks folder, as shown here:

//code 4.2

//resources/views/tasks/edit.blade.php

<div class="card-body">

{!! Form::model($task, ['route' => ['tasks.update', $task->id], 'method' =>

'PUT']) !!}

<div class="form-group">

{!! Form::label('title', 'Title', ['class' => 'awesome']) !!}

{!! Form::text('title', $task->title, ['class' => 'form-control']) !!}

</div>

<div class="form-group">

{!! Form::label('body', 'Body', ['class' => 'awesome']) !!}

{!! Form::textarea('body', $task->body, ['class' => 'form-control']) !!}

</div>

<div class="form-group">

Chapter 4 Working with Models

77

{!! Form::submit('Edit Task', ['class' => 'btn btn-primary form-control'])

!!}

</div>

{!! Form::close() !!}

</div>

In the previous code, this line is important:

{!! Form::model($task, ['route' => ['tasks.update', $task->id], 'method' =>

'PUT']) !!}

Why does the route point to tasks.update, instead of tasks.edit? You can

understand it better if you look at route:list, which tells you the action verb or method

is tasks.update. Also, it points to the action TaskController@update.

This is part of the RESTful action on the resource model Task. What is happening

here is that the generated controller will already have methods stubbed for each of these

actions. Laravel is smart enough to include notes in its service container, informing you

which URIs and verbs they handle. So, you don’t have to create the view page tasks.

update in the resource/views/tasks folder. Through the RESTful resource controller,

Laravel handles it.

You bind the route with the model Task. To understand this, you need to watch the

edit method of TaskController.

//code 4.3

//app/HTTP/Controllers/TaskController.php

 public function edit($id)

 {

 if(Auth::user()->is_admin == 1){

 $task = Task::findOrFail($id);

 return view('tasks.edit', compact('task'));

 }

 else {

 return redirect('home');

 }

 }

Here you pass the task object as $task to tasks.edit, and Laravel is smart enough

to guess that it is an instance of the Task model.

Chapter 4 Working with Models

78

Now if you want to edit the first task that has an ID of 1, the URI is http://

localhost:8000/tasks/1/edit, as shown in Figure 4-1.

Figure 4-1.  Route model binding through form

�Implicit Route Binding
You can achieve the same route model binding effect with implicit binding. In the

previous code, you saw how to get the ID of the task resource. Now go ahead and change

the code to the following:

//code 4.4

//app/HTTP/Controllers/TaskController.php

 public function edit(Task $task)

 {

 if(Auth::user()->is_admin == 1){

 return view('tasks.edit', compact('task'));

 }

Chapter 4 Working with Models

79

 else {

 return redirect('home');

 }

 }

Laravel automatically resolves Eloquent models defined in routes or controller

actions, as in public function edit(Task $task){}, whose type-hinted variable

names match a route segment name. Since the $task variable is type-hinted as the

App\Task Eloquent model and the variable name matches the {task} URI segment,

Laravel will automatically inject the model instance that has an ID matching the

corresponding value from the request URI.

Now if you want to edit the task with an ID of 2, the URI is http://localhost:8000/

tasks/2/edit, and you get the same effect.

�Custom Route Binding
By the way, you can customize the key name also. Suppose you have another database

column other than ID and that database column is named slug.

In that case, you can override the getRouteKeyName method on the Eloquent model

in the following way:

//code 4.5

 /**

 * Get the route key for the model.

 *

 * @return string

 */

 public function getRouteKeyName()

 {

 return 'slug';

 }

Now instead of the ID, you can pass slug as an instance of the task resource like

before.

Chapter 4 Working with Models

80

�Model Relations
An application in Laravel mainly depends on model relations. Therefore, this section

is one of the most important sections in the book. Up to now, you were trying to

understand how the Laravel Model-View-Controller logic works. Now the time has come

to build a small article management application. While building this application, you

will learn about some other key components of Laravel. In the next chapter, I will go

deeper into the database and Eloquent ORM components, and you will see how these

relational operations work through models and how controllers control the workflow

between models and views.

Building models from scratch is, no doubt, a cumbersome job, so Laravel has taken

care of this in an elegant way. By default, Laravel comes with only the User model, but

you can configure it according to your requirements. In most applications, however

complicated they are, you do not have to touch the default User model installed by

Laravel. You can add any extra columns in the users database table. According to the

MVC pattern, the model talks to the database, either retrieves data from the database or

inserts it, updates the data, and passes it to the controller. Then, the controller can pass

it to the views. Conversely, the controller takes input from the views and passes it to the

model to process data.

The User model interacts with the users database, and in the same way, other

models will work in tandem with the other tables to run the article management

application smoothly. In this application, you have many separate resources, such as

articles, users, profiles, comments, and so on. These resources will interact with each

other through models. Laravel has made the process super simple and expressive.

Behind the scenes, Laravel handles a huge task, which is evident from these simple

expressive functions. Consider a few scenarios where a user has many comments. It

is obvious that a user should be able to comment as much as they want. They should

also be able to comment on another user’s profile. So, the comment object may have

a polymorphic relationship with two model objects: Article and Profile. One user

may have many articles too. Now, each article may have many tags, and many tags may

belong to many articles.

Therefore, you can see many types of relations here: article to user and the inverse

(one-to-one), one user to one profile (one-to-one), one article to many tags (one-to-

many), many articles to many tags (many-to-many), and comments to articles and

profiles (polymorphic).

Chapter 4 Working with Models

81

Note A polymorphic relationship is where a model can belong to more than
one other model on a single association, such as comments belonging to the
articles and profiles table records at the same time.

Before taking a look at the models, you must perform your migrations, covered next.

�How Migrations Work with the Laravel Model
For the sake of building the example application, let’s start with the database. I could

have started with controllers and views or I could have discussed the model, but

database migration is a good option because you are going to see how to create a

completely database-driven application. This migration has a direct relation with the

models.

You will see how it works in a minute.

Laravel supports four databases currently: MySQL, PostgreSQL, SQLite, and

Microsoft SQL Server. The config/database.php file defines MySQL as the default

database connection.

'default' => env('DB_CONNECTION', 'mysql'),

You can change this to match your requirements. Next, you will take a look at the

database connection setup in the config/database.php file so that you have a proper

understanding of how Laravel has designed this beautifully, as shown here:

'connections' => [

 'sqlite' => [

 'driver' => 'sqlite',

 �'database' => env('DB_DATABASE', database_path('database.

sqlite')),

 'prefix' => '',

],

 'mysql' => [

 'driver' => 'mysql',

 'host' => env('DB_HOST', '127.0.0.1'),

 'port' => env('DB_PORT', '3306'),

Chapter 4 Working with Models

82

 'database' => env('DB_DATABASE', 'forge'),

 'username' => env('DB_USERNAME', 'forge'),

 'password' => env('DB_PASSWORD', ''),

 'unix_socket' => env('DB_SOCKET', ''),

 'charset' => 'utf8mb4',

 'collation' => 'utf8mb4_unicode_ci',

 'prefix' => '',

 'strict' => true,

 'engine' => null,

],

 'pgsql' => [

 'driver' => 'pgsql',

 'host' => env('DB_HOST', '127.0.0.1'),

 'port' => env('DB_PORT', '5432'),

 'database' => env('DB_DATABASE', 'forge'),

 'username' => env('DB_USERNAME', 'forge'),

 'password' => env('DB_PASSWORD', ''),

 'charset' => 'utf8',

 'prefix' => '',

 'schema' => 'public',

 'sslmode' => 'prefer',

],

 'sqlsrv' => [

 'driver' => 'sqlsrv',

 'host' => env('DB_HOST', 'localhost'),

 'port' => env('DB_PORT', '1433'),

 'database' => env('DB_DATABASE', 'forge'),

 'username' => env('DB_USERNAME', 'forge'),

 'password' => env('DB_PASSWORD', ''),

 'charset' => 'utf8',

 'prefix' => '',

],

],

Chapter 4 Working with Models

83

Here, I would like to add one key concept: object-relational mapping (ORM). As an

intermediate PHP user, you are probably already acquainted with this concept; yet, a

few lines about it won’t hurt you, as Laravel has managed this feature magnificently via

Eloquent ORM. Mapping the application object to the database tables has been one of

the greatest challenges of using Laravel; however, Eloquent ORM has solved this problem

completely. It provides an interface that converts application objects to database table

records and does the reverse too.

The next line in the file is also important:

'migrations' => 'migrations',

What does this mean? It is a default name of the table used for the project’s migration

status. Don’t change it.

The next lines of code look like this:

'redis' => [

 'client' => 'predis',

 'default' => [

 'host' => env('REDIS_HOST', '127.0.0.1'),

 'password' => env('REDIS_PASSWORD', null),

 'port' => env('REDIS_PORT', 6379),

 'database' => 0,

],

],

Redis is an open source, fast, key-value store; among other things, you can manage

cache and session data with it.

After studying the config/database.php file, you will look at the .env file. It’s an

important file that plays a major role in building an awesome application. You will find

it in the root directory. When you build a database-driven application, you can locally

create a database called laravelmodelrelations in MySQL. The environment file .env

just points it to the database name, including your MySQL username and password. You

are interested in these lines:

DB_DATABASE=laravelmodelrelations

DB_USERNAME=root

DB_PASSWORD=********

Chapter 4 Working with Models

84

By default, the database is homestead; you can use this one, or you can change it

accordingly. I have created a database called laravelmodelrelations and connected it

with my Laravel application through this .env file.

Now, using migration, I can build my database tables and relate them with each

other using some simple default methodology.

Keeping your application logic in your mind, you need to design the tables. Laravel

comes up with two tables: users and password-resets. You do not need to change

the second one. However, if needed, you can change the users table. Here, you don’t

do that, because you will have a separate Profile table where you will add some more

information about a user. Besides, you need to build other tables as your application

demands.

Let’s see the database/migrations/create_password_resets_table.php file first.

// code 4.6

// database/migrations/create_password_resets_table.php

public function up()

 {

 Schema::create('password_resets', function (Blueprint $table) {

 $table->string('email')->index();

 $table->string('token');

 $table->timestamp('created_at')->nullable();

 });

 }

public function down()

 {

 Schema::dropIfExists('password_resets');

 }

I didn’t paste the whole code here for brevity. Let me explain the first chunk: through

the up() method, the Schema class creates the table password_resets, and it is created

dynamically in your database using a closure, where the Blueprint table object takes

charge. Inside this function, you can add extra functionalities. In database/migrations/

create_password_resets_table.php, you don’t have to do that. Next, you will build the

Profile model and table by issuing a single command, as shown here:

// code 4.7

$ php artisan make:model Profile -m

Chapter 4 Working with Models

85

Model created successfully.

Created Migration: 2018_09_16_235301_create_profiles_table

The first model, called Profile, has been created under the app folder. Next, you

should work on the profiles table before running the migration.

The profiles table has the following code inside database/migrations folder; the

file name is generated by Laravel, prefixed by the data in which it is generated:

// code 4.8

//profiles table comes up by default

public function up()

 {

 Schema::create('profiles', function (Blueprint $table) {

 $table->increments('id');

 $table->timestamps();

 });

 }

In fact, whenever you create a model with the respective table, it already has a

skeleton like this. So, for the next tables, I won’t repeat this skeleton anymore. You need

to add some more functionality in this code. So, it looks like this:

// code 4.9

public function up()

 {

 Schema::create('profiles', function (Blueprint $table) {

 $table->increments('id');

 $table->integer('user_id');

 $table->string('city', 64);

 $table->text('about');

 $table->timestamps();

 });

 }

I could have added more functionalities such as first name, last name, and so on,

but I didn’t do that for brevity. Currently, our purposes will be served by only city and

about. The interesting part is of course user_id. Each profile is connected with a single

user.

Chapter 4 Working with Models

86

Therefore, you can say that each user has one profile, and one profile belongs to one

user. You can define that relationship in two respective models: User and Profile. I will

cover that relationship later; right now let’s create other models and tables by issuing

these commands one after another:

// code 4.10

$ php artisan make:model Profile -m

Model created successfully.

Created Migration: 2018_09_17_233619_create_profiles_table

$ php artisan make:model Tag -m

Model created successfully.

Created Migration: 2018_09_18_013602_create_tags_table

$ php artisan make:model Article -m

Model created successfully.

Created Migration: 2018_09_18_013613_create_articles_table

$ php artisan make:model Comment -m

Model created successfully.

Created Migration: 2018_09_18_013629_create_comments_table

$ php artisan make:migration create_article_tag_table --create=article_tag

Created Migration: 2018_09_17_094743_create_article_tag_table

Let me explain what you are doing here. By using a single command like php

artisan make:model Comment -m, you create a model comment, and at the same time

Laravel creates a related comments table for it.

Now, before running the migration, you should plan your application and add

functionalities to your newly created tables based on code 4.9.

You have the users and profiles tables, and you have a corresponding key that may

attach one profile to one user. So, you will add these methods to the User and Profile

models, respectively.

// code 4.11

// app/User.php

public function profile() {

 return $this->hasOne('App\Profile');

 }

Chapter 4 Working with Models

87

This means one user has one profile, and it attaches to the App\Profile model.

This is a one-to-one relationship between the User and Profile models. Now it has an

inverse in the Profile model.

// code 4.12

// app/Profile.php

public function user() {

 return $this->belongsTo('App\User');

 }

This code does the same thing, only in an inverse way. Each profile should belong to

one User model. To speed up your application, let’s add functionalities to other tables

and after that define the relationship accordingly.

Next, you have the tags and articles tables. They have an interesting relationship

between them. Many tags belong to many articles, and the inverse is also true. With

some simple logic, you can say they have a many-to-many relation. So, you need a pivot

table to maintain that relationship. Let’s see the functionalities of those tables first,

shown here:

// code 4.13

// tags table

public function up()

 {

 Schema::create('tags', function (Blueprint $table) {

 $table->increments('id');

 $table->string('tag');

 $table->timestamps();

 });

 }

At the same time, I mentioned the relationship with article at the Tag model, as

follows:

//Tag.php

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

Chapter 4 Working with Models

88

class Tag extends Model

{

 //

 protected $fillable = [

 'tag'

];

 public function articles() {

 return $this->belongsToMany('App\Articles');

 }

}

Next you have articles table, as shown here:

// code 4.14

// articles table

public function up()

 {

 Schema::create('articles', function (Blueprint $table) {

 $table->increments('id');

 $table->integer('user_id');

 $table->string('title');

 $table->text('body');

 $table->timestamps();

 });

 }

I will also mention the relationship with other resource models and related tables

including Tag, as shown here:

//Article.php

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

Chapter 4 Working with Models

89

class Article extends Model

{

 //

 protected $fillable = [

 'user_id', 'title', 'body',

];

 public function user() {

 return $this->belongsTo('App\User');

 }

 /**

 * Get the tags for the article

 */

 public function tags() {

 return $this->belongsToMany('App\Tag');

 }

 /**

 * Get all of the profiles' comments.

 */

 public function comments(){

 return $this->morphMany('App\Comment', 'commentable');

 }

}

Also, now you have the pivot table article_tag, as shown here:

// code 4.15

// article_tag table

public function up()

 {

 Schema::create('article_tag', function (Blueprint $table) {

 $table->increments('id');

 $table->integer('article_id');

Chapter 4 Working with Models

90

 $table->integer('tag_id');

 $table->timestamps();

 });

 }

You’ll also want to create a Role model and roles table because you want your

users to have some certain privileges such as Administrator, Moderator, and Member.

Therefore, you need a pivot table like role_user.

Let’s create the roles. The commands are simple, as shown here:

$ php artisan make:model Role -m

To create a role_user table, you issue this command:

$ php artisan make:migration create_role_user_table –create=role_user

The Role model has some methods that allow it to have a relationship with the User

model. Let’s take a look at the code:

// app/Role.php

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Role extends Model

{

 protected $fillable = [

 'name'

];

 public function user() {

 return $this->belongsTo('App\User');

 }

 public function users() {

 return $this->belongsToMany('App\User');

 }

}

Chapter 4 Working with Models

91

One role may belong to one user, and at the same time it may belong to many users.

So, you need to add two methods in your User model, as shown here:

//app.User.php

public function role() {

 return $this->belongsTo('App\Role');

 }

 public function roles() {

 return $this->belongsToMany('App\Role');

 }

One user may have one role or many roles at the same time.

Now you need to work on the tables you have just created. First, add a name column

to the roles table, as shown here:

// database/migrations/roles table

public function up()

 {

 Schema::create('roles', function (Blueprint $table) {

 $table->increments('id');

 $table->string('name');

 $table->timestamps();

 });

 }

At the same time in your pivot table role_user, add two columns, as shown here:

role_id and user_id.

// database/migrations/roles table

public function up()

 {

 Schema::create('role_user', function (Blueprint $table) {

 $table->increments('id');

 $table->integer('role_id');

 $table->integer('user_id');

 $table->timestamps();

 });

 }

Chapter 4 Working with Models

92

I have not touched the comment table currently, for one reason. You will work on that

table at the end phase of building your content management application. This is because

the comment table will have polymorphic relations with other tables. I will discuss it in the

next chapter.

So, you have most of the tables ready to migrate from Laravel to your database. You

can run the migration by using this command:

// code 4.16

$ php artisan migrate

Migrating: 2018_09_17_233619_create_profiles_table

Migrated: 2018_09_17_233619_create_profiles_table

Migrating: 2018_09_18_013602_create_tags_table

Migrated: 2018_09_18_013602_create_tags_table

Migrating: 2018_09_18_013613_create_articles_table

Migrated: 2018_09_18_013613_create_articles_table

Migrating: 2018_09_18_013629_create_comments_table

Migrated: 2018_09_18_013629_create_comments_table

Migrating: 2018_09_18_013956_create_article_tag_table

Migrated: 2018_09_18_013956_create_article_tag_table

...

the list is incomplete

Since you have migrated your tables, you can now populate them with fake data. It

can be a tedious job to add fake data manually. Laravel has taken care of that so you are

able to test your application with fake data.

�Model and Faker Object
To populate the database with fake data, open your database/factory/UserFactory.

php file. You will use the Faker object to define the model and add some fake data into it.

// code 4.17

// database/factory/UserFactory.php

$factory->define(App\User::class, function (Faker $faker) {

 return [

 'name' => $faker->name,

 'email' => $faker->unique()->safeEmail,

Chapter 4 Working with Models

93

 �'password' => '$2y$10$TKh8H1.PfQx37YgCzwiKb.

KjNyWgaHb9cbcoQgdIVFlYg7B77UdFm', // secret

 'remember_token' => str_random(10),

];

});

$factory->define(App\Article::class, function (Faker $faker) {

 return [

 'user_id' => App\User::all()->random()->id,

 'title' => $faker->sentence,

 'body' => $faker->paragraph(random_int(3, 5))

];

});

$factory->define(App\Profile::class, function (Faker $faker) {

 return [

 'user_id' => App\User::all()->random()->id,

 'city' => $faker->city,

 'about' => $faker->paragraph(random_int(3, 5))

];

});

$factory->define(App\Tag::class, function (Faker $faker) {

 return [

 'tag' => $faker->word

];

});

$factory->define(App\Role::class, function (Faker $faker) {

 return [

 'name' => $faker->word

];

});

Chapter 4 Working with Models

94

Let me explain this code a little bit. Here, you are using the faker object to populate

the database tables with some dummy data. You will run the database seeds through

database/seeds/DatabaseSeeder.php. The code looks like this:

// code 4.18

// database/seeds/DatabaseSeeder.php

public function run()

 {

 factory(App\User::class, 10)->create()->each(function($user){

 $user->profile()->save(factory(App\Profile::class)->make());

 });

 factory(App\Tag::class, 20)->create();

 factory(App\Article::class, 50)->create()->each(function($article){

 $ids = range(1, 50);

 shuffle($ids);

 $sliced = array_slice($ids, 1, 20);

 $article->tags()->attach($sliced);

 });

 factory(App\Role::class, 3)->create()->each(function($role){

 $ids = range(1, 5);

 shuffle($ids);

 $sliced = array_slice($ids, 1, 20);

 $role->users()->attach($sliced);

 });

 }

You are going to create 10 users, 20 tags, and 50 articles. One single command will

handle the whole operation. In the last two factory() methods, you attached tags with

the article object, and role with users. While populating the tables with fake data, it

will automatically attach some tags with some articles. The same is true for roles and

users.

// code 4.19

$ php artisan migrate:refresh –seed

Chapter 4 Working with Models

95

This will give you some long output where it rolls back all the tables and migrates

them instead. Remember, any time you issue this command, it will populate the

database tables with a new combination of data. This enhances the testability, because

you can always add some new columns in a table and run this command, and it will roll

back the old tables and migrate the new.

// output

Rolling back: 2018_09_18_013956_create_article_tag_table

Rolled back: 2018_09_18_013956_create_article_tag_table

Rolling back: 2018_09_18_013629_create_comments_table

Rolled back: 2018_09_18_013629_create_comments_table

Rolling back: 2018_09_18_013613_create_articles_table

Rolled back: 2018_09_18_013613_create_articles_table

Rolling back: 2018_09_18_013602_create_tags_table

Rolled back: 2018_09_18_013602_create_tags_table

Rolling back: 2018_09_17_233619_create_profiles_table

Rolled back: 2018_09_17_233619_create_profiles_table

Rolling back: 2014_10_12_100000_create_password_resets_table

Rolled back: 2014_10_12_100000_create_password_resets_table

Rolling back: 2014_10_12_000000_create_users_table

Rolled back: 2014_10_12_000000_create_users_table

Migrating: 2014_10_12_000000_create_users_table

Migrated: 2014_10_12_000000_create_users_table

Migrating: 2014_10_12_100000_create_password_resets_table

Migrated: 2014_10_12_100000_create_password_resets_table

Migrating: 2018_09_17_233619_create_profiles_table

Migrated: 2018_09_17_233619_create_profiles_table

Migrating: 2018_09_18_013602_create_tags_table

Migrated: 2018_09_18_013602_create_tags_table

Migrating: 2018_09_18_013613_create_articles_table

Migrated: 2018_09_18_013613_create_articles_table

Migrating: 2018_09_18_013629_create_comments_table

Migrated: 2018_09_18_013629_create_comments_table

Migrating: 2018_09_18_013956_create_article_tag_table

Migrated: 2018_09_18_013956_create_article_tag_table

...

this list is incomplete

Chapter 4 Working with Models

96

To watch the real actions in your database tables, you don't have to use phpMyAdmin

always. You can check it on your terminal also in this way:

// code 4.20

mysql> use laravelmodelrelations

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

mysql> show tables;

+---------------------------------+

| Tables_in_laravelmodelrelations |

+---------------------------------+

| article_tag |

| articles |

| comments |

| migrations |

| password_resets |

| profiles |

| role_user |

| roles |

| tags |

| users |

+---------------------------------+

10 rows in set (0.00 sec)

mysql> select * from users;

This will also give you a long listing of all ten users on your terminal, as shown in

Figure 4-2.

Chapter 4 Working with Models

97

Take the third user; the user’s name is Van Gorczany, and the e-mail ID is kerluke.

filomena@example.net. Now through that dummy e-mail, you can log in to your

application. Every user has one password, which is secret.

You have migrated all tables except Comment. You have dummy data inside the

tables; therefore, you can now build the relations, and after that, you can use resource

controllers and views to show how these model relations work perfectly.

�Examining the Home Page
Before proceeding, let’s take a look at what your home page will look like, as shown in

Figure 4-3.

Figure 4-2.  All dummy users in the users table

Chapter 4 Working with Models

98

To create the home page of your content management system (Figure 4-3), you need

to slightly change the default routes/web.php page, and you can also change the code of

the resource/views/welcome.blade.php file.

// code 4.21

// routes/web.php

use App\Article;

use App\Tag;

Route::get('/', function () {

 $articles = Article::all();

 $tags = Tag::all();

 return view('welcome', ['articles' => $articles, 'tags' => $tags]);

});

Figure 4-3.  The home page of the article management application

Chapter 4 Working with Models

99

All you have done here is to pass articles and tags separately. Now in the welcome.

blade.php file, you will get the following output:

// code 4.22

// resources/views/welcome.blade.php

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="row">

 �<div class="col-md-8 blog-main col-lg-8 blog-main col-sm-8 blog-

main">

 <div class="blog-post">

 <ul class="list-group">

 @foreach($articles as $article)

 <li class="list-group-item">

 <h2 class="blog-post-title">

 �<li class="list-group-item"><a href="/articles/{{

$article->id }}">{{ $article->title }}

 </h2>

 �Written by user_id }}

/articles">{{ $article->user->name }}

 @endforeach

 </div>

 <nav class="blog-pagination">

 Older

 Newer

 </nav>

 </div>

 <aside class="col-md-4 blog-sidebar">

 <div class="p-3">

 <h4 class="font-italic">Tags Cloud</h4>

 @foreach($tags as $tag)

 {{ $tag->tag }}...

 @endforeach

Chapter 4 Working with Models

100

 </div>

 </aside>

 </div>

</div>

@endsection

Let’s look at this line from the previous code:

Written by user_id }}/articles">{{ $article-

>user->name }}

The article object directly accesses the user object and gets the respective name

associated with that article. How does this happen? This is a good example of a one-to-

one relationship. If you click the link, you will reach the user’s page and can read all the

articles written by that user. You need to understand one thing: every article belongs to

one user, and you can access that user from that article. Laravel model relations handle

that behind the scenes. To make them work properly, you have to define them in the

models.

The next step will be to check all the models and finally define the relationship

between them so that they can talk to each other to fetch the respective data. After that,

you will build the resource controllers and views to complete the whole setup.

Next, you will see a series of code listings from your models so that you can associate

these relational ideas with the models.

// code 4.23

// app/Article.php

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Article extends Model

{

 protected $fillable = [

 'user_id', 'title', 'body',

];

Chapter 4 Working with Models

101

 public function user() {

 return $this->belongsTo('App\User');

 }

 public function users() {

 return $this->belongsToMany('App\User');

 }

 public function tags() {

 return $this->belongsToMany('App\Tag');

 }

}

I have not included the comment methods here. I will do that as you progress through

the book. Initially, the Article model has one-to-one, one-to-many, and many-to-many

relations with the User and Tag models.

// code 4.24

// app/Profile.php

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Profile extends Model

{

 /**

 * The attributes that are mass assignable.

 *

 * @var array

 */

 protected $fillable = [

 'user_id', 'city', 'about',

];

 public function user() {

 return $this->belongsTo('App\User');

 }

}

Chapter 4 Working with Models

102

The Profile model has one method called user that defines the relationship with

one User. You will see later how you can access the profile of any user from the user

object.

// code 4.25

// app/Tag.php

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Tag extends Model

{

 //

 protected $fillable = [

 'tag'

];

 public function articles() {

 return $this->belongsToMany('App\Articles');

 }

}

Next, you will take a look at the User model. It is important to note that the User

model plays a vital role in this application.

// code 4.26

// app/User.php

<?php

namespace App;

use Illuminate\Notifications\Notifiable;

use Illuminate\Foundation\Auth\User as Authenticatable;

class User extends Authenticatable

{

 use Notifiable;

Chapter 4 Working with Models

103

 /**

 * The attributes that are mass assignable.

 *

 * @var array

 */

 protected $fillable = [

 'name', 'email', 'password',

];

 /**

 * The attributes that should be hidden for arrays.

 *

 * @var array

 */

 protected $hidden = [

 'password', 'remember_token',

];

 public function profile() {

 return $this->hasOne('App\Profile');

 }

 public function article() {

 return $this->hasOne('App\Article');

 }

 public function articles() {

 return $this->hasMany('App\Article');

 }

}

Currently, this model has one component missing, which is Comment. You will add it

in the last stage. From the previous code, it is evident that the user has one profile, has

one article, and many articles.

You have your database tables ready with dummy data. You have made your models

ready to maintain the relationship among the objects. So, the time has come to make

resource controllers. After that, you will build your views to test that your application

works.

Chapter 4 Working with Models

104

�Relations Between Model, Database, and Eloquent
PHP database integration is a tedious process. It usually takes four essential steps to

complete the database integration.

	 1.	 Laravel creates a connection.

	 2.	 Laravel selects a database; you know these parts, such as user

name, password, etc have been defined in the .env file.

	 3.	 Usually, the third step is the most complicated one: performing

a database query. Laravel’s Eloquent ORM handles that

complicated part in such a decent manner that you don’t have to

worry about it.

	 4.	 After that, Laravel automatically closes the connection. I have

already discussed this topic in great detail.

There are some advantages to using a resource controller. With a single command,

you can attach the controller to the associated model. Moreover, you can have every

necessary method in one place. Let’s create the resource Comment controller and

associate it with the Comment model. A single command will do this, as shown here:

// code 4.27

$ php artisan make:controller CommentController --resource --model=Comment

Let’s look at the newly created Comment controller. Now it is empty. However, it

provides all the essential methods.

// code 4.28

// app/HTTP/Controllers/CommentController.php

<?php

namespace App\Http\Controllers;

use App\Comment;

use Illuminate\Http\Request;

class CommentController extends Controller

{

 public function index()

Chapter 4 Working with Models

105

 {

 }

 public function create()

 {

 //

 }

 public function store(Request $request)

 {

 //

 }

 public function show(Comment $comment)

 {

 //

 }

 public function edit(Comment $comment)

 {

 //

 }

 public function update(Request $request, Comment $comment)

 {

 //

 }

 public function destroy(Comment $comment)

 {

 //

 }

}

The index() method will present the home page where you can show every

comment in one place. Through the show() method, you can show each comment.

While showing each comment, you can also show who the commenter is. The

possibilities are endless. At the same time, by using this resource controller, you can

create/store, edit/update, and finally destroy the comment object.

Chapter 4 Working with Models

106

So, you create other resource controllers in the same way.

// code 4.29

$ php artisan make:controller UserController --resource –model=User

$ php artisan make:controller ArticleController --resource –model=Article

$ php artisan make:controller TagController --resource –model=Tag

Now you can define the routes in your routes/web.php file.

// code 4.30

// routes/web.php

Auth::routes();

Route::get('/home', 'HomeController@index')->name('home');

Route::resource('users', 'UserController');

Route::resource('profiles', 'ProfileController');

Route::resource('articles', 'ArticleController');

Route::resource('comments', 'CommentController');

Route::get('/users/{id}/articles', 'ArticleController@articles');

Route::get('/', 'ArticleController@main');

I have also changed the main route. In the previous process, you used an anonymous

function to return the view; now you are taking that view under the main() method of

ArticleController.

�Creating Views to Show Relationships
For the first phase of your application, you are ready to create the views. You have seen

the welcome.blade.php page. To articles along with other associated objects, you are

going to learn how to create three more view pages. They are index.blade.php, show.

blade.php, and articles.blade.php.

Here’s the code of the index() method in ArticleController.php:

// code 4.31

// app/HTTP/Controllers/ArticleController.php

 public function index()

 {

Chapter 4 Working with Models

107

 $articles = Article::orderBy('created_at','desc')->paginate(4);

 $users = User::all();

 $tags = Tag::all();

 return view('articles.index', compact('articles', 'users', 'tags'));

 }

You are passing all articles with pagination links, users, and tags to the index page of all

articles so that you can move to other pages easily. You can do that because of the Eloquent

ORM, which provides you with a simple yet elegant ActiveRecord implementation for

working with your database. Here you might have noticed that each database table has a

corresponding model, and I have used that to get all the records, as follows:

$articles = Article::orderBy('created_at,'desc')->paginate(4);

Here, the model Article allows you to query data in the tables, and you have just

passed that data to the views with pagination links (here showing four articles per page).

In the same way, later you will insert the data into the database. Next, you will get those

values in the index page, so the code of resources/views/articles/index.blade.php

looks like this:

// code 4.32

// resources/views/articles/index.blade.php

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="row">

 �<div class="col-md-6 blog-main col-lg-6 blog-main col-sm-6 blog-main">

 <div class="blog-post">

 <ul class="list-group">

 @foreach($articles as $article)

 <li class="list-group-item"><h2 class="blog-post-title">

 �<li class="list-group-item"><a href="/articles/{{

$article->id }}">{{ $article->title }}

 </h2>

Chapter 4 Working with Models

108

 @endforeach

 {{ $articles->render() }}

 </div>

 <nav class="blog-pagination">

 </nav>

 </div>

 <aside class="col-md-3 blog-sidebar">

 <div class="p-3">

 <h4 class="font-italic">All Writers</h4>

 @foreach($users as $user)

 id }}">{{ $user->name }}...

 @endforeach

 </div>

 </aside>

 <aside class="col-md-3 blog-sidebar">

 <div class="p-3">

 <h4 class="font-italic">Tags-Cloud</h4>

 @foreach($tags as $tag)

 id }}">{{ $tag->tag }}...

 @endforeach

 </div>

 </aside>

 </div>

</div>

@endsection

You loop through the articles item and grab four articles on each page, and the

code {{ $articles->render() }} gives you the pagination links.

Now, if you type http://localhost:8000/articles in your browser, it will show the

page in Figure 4-4 with pagination in place.

Chapter 4 Working with Models

109

This is where you find all the tables related to the respective models. You must

understand the naming conventions that Eloquent ORM follows. When you create

the model on the command line, Laravel creates a table for that. By convention, the

snake_case plural name of the class has been used as the table name. You saw that

for the Article model, a table articles has been created. You didn’t tell Eloquent

which table to use for your Article model. By default, it has chosen the name. First, in

the ArticleController using the index() method, you start retrieving data from the

database. Here the Eloquent model has acted as a powerful query builder allowing you

to fluently query the database associated with the database.

Instead of writing this code in the main() method:

$articles = Article::all();

you can add constraints to queries and then use the get method to retrieve the results in

this way:

$articles = Article::where('user_id', 1)->orderBy('title', 'desc')-

>take(5)->get();

Figure 4-4.  The Articles page of the article management application

Chapter 4 Working with Models

110

This has brought a massive change in the whole structure of the main page at http://

localhost:8000. You have used constraints to choose the user_id set to 1 and ordered

the titles in descending order. The four records have been taken from the database.

Finally, your main() method of ArticleController looks like this:

// code 4.33

// app/HTTP/Controllers/ ArticleController.php

public function main()

 {

 �$articles = Article::where('user_id', 1)->orderBy('title', 'desc')-

>take(4)->get();

 $tags = Tag::all();

 return view('welcome', ['articles' => $articles, 'tags' => $tags]);

 }

The welcome.blade.php file now looks like this:

// code 4.34

//resources/views/ welcome.blade.php

<ul class="list-group">

 @foreach($articles as $article)

 <li class="list-group-item">

 <h2 class="blog-post-title">

 �<li class="list-group-item"><a href="/articles/

{{ $article->id }}">{{ $article->title }}

 </h2>

 @endforeach

...

<aside class="col-md-4 blog-sidebar">

 <div class="p-3">

 �<h3 class="blog-post-title">This week you have showcased only

the articles

 �Written by user_id }}

/articles">{{ $article->user->name }}

 </h3>

Chapter 4 Working with Models

111

 Showing the first four results

 <hr class="linenums" color="red">

 <h4 class="font-italic">Tags Cloud</h4>

 @foreach($tags as $tag)

 {{ $tag->tag }}...

 @endforeach

 </div>

 </aside>

You saw before how this logic looks in the home page (Figure 4-3). In the left sidebar

panel, you are showcasing the articles by the user (with an ID of 1).

As you see, methods like all() and get() retrieve multiple results. Actually, an

instance of Illuminate\Database\Eloquent\Collection has been returned. This

Collection class provides many helpful methods for working with the Eloquent results.

In this case, you can loop over the collection like an array.

However, the most interesting line in the code is as follows:

<h3 class="blog-post-title">This week we have showcased only the articles

 �Written by user_id }}

/articles">{{ $article->user->name }}

 </h3>

Why is this the most fascinating line of all? The $article object directly accesses the

$user object and gets its name property. In the ArticleController main() method,

you have directed the Article model to select the articles belonging to the user with

an ID of 1. In addition, in the Article model, you are defining the method in this way:

// code 4.35

// app/Article.php

public function user() {

 return $this->belongsTo('App\User');

 }

It is true that a user has many articles; likewise, it is true that a particular article

belongs to a particular user.

In the next chapter, you will see those relations in great detail.

Chapter 4 Working with Models

113
© Sanjib Sinha 2019
S. Sinha, Beginning Laravel, https://doi.org/10.1007/978-1-4842-4991-8_5

CHAPTER 5

Database Migration
and Eloquent
You can interact with databases using Laravel 5.8 in a simple and expressive way. Either

you can use the DB facade, using raw SQL to query your databases, or you can use

Eloquent ORM.

Laravel supports four databases.

–– MySQL

–– PostgreSQL

–– SQLite

–– SQL Server

You have learned how to configure a database for any application you want to build.

The database configuration file is config/database.php. If you want, you can define all

your database connections; you can also specify which one will be the default one.

�Introduction to Migration
You can easily create and modify your database tables with the help of Laravel’s schema

builders. Migrations are typically paired with the schema builders. You can also easily

share database tables with your team members.

How easy is it? Let’s see an example first.

To create a migration, you use the command make:migration create_tests_table.

114

Suppose you are going to create a tests table. The command is simple, as shown

here:

//code 5.1

php artisan make:migration create_tests_table

Every database table represents a particular resource. In this case, the create_

tests_table table also connects to the Test model. You can create the same table at the

same time as the model, or you can create table separately.

You saw earlier that a new migration was placed in the database/migrations

directory, and each migration file contains a timestamp that helps Laravel to maintain

the order of the migrations.

To return to the previous subject, there are two options that are used to indicate the

name of the table and to indicate whether the migration is new. It is necessary to modify

some functionality of any table. Another important aspect is that the name of the table

always relates to the model name. If the model name is Test, for example, then Laravel

guesses that the table name will be create_tests_table; Laravel adds a prefix of the

timestamp before the table name, as in 2019_05_18_013613_create_tests_table.

//code 5.2

php artisan make:migration create_tests_table –create=tests

php artisan make:migration add_names_to_tests_table –table=tests

Depending on the number of your resources, you can create as many tables as

you need to create for your application. Later, through Eloquent ORM, you can build

relationships between those tables. Laravel makes this extremely easy for developers.

�Introduction to Eloquent
Working with a database is not always easy. Eloquent ORM provides a simple

ActiveRecord implementation for working with a database. As I mentioned earlier, each

database table has a corresponding model that represents a particular resource.

These models are used to interact with the corresponding database table. Each

model allows you to query the data in the database table and insert, update, and delete

data.

To start with, you can create any Eloquent model by issuing a simple command:

–make:model. You will find that model in the app directory. All Eloquent models extends

Chapter 5 Database Migration and Eloquent

115

the Illuminate\Database\Eloquent\Model class. Through the artisan commands, you

can create models in this way:

//code 5.3

php artisan make:model Test

To generate a database migration, you can add either the --migration or --m option,

as shown here:

//code 5.4

php artisan make:model Test --migration

php artisan make:model Test -m

Once your model is created, you can start building the relationships between the

database tables.

�Introduction to Eloquent Relations
A good application rests on well-defined relationships between database tables.

Considering each table and model as separate resources, you can define how they will

interact with each other.

Suppose an article post has many comments or it has been associated with a

particular username. In that case, you can say each article has one-to-one relation with

the user. This relation is defined in the models Article and User. This is the same

for comments also. Eloquent helps manage and work with these relationships, and it

supports several different types of relationships. You will see them in a minute.

In the Eloquent model classes, the relationships are defined as methods. Actually,

based on these relationships, you can make your queries. Therefore, these methods

provide powerful method chaining and querying capabilities.

How can you chain your methods? Here is an example of adding additional

constraints:

$user->articles()->where('category_id', 1)->get();

You’ll now learn how to define each type separately. Let’s start with one-to-one

relationships. Then you will examine the others.

Chapter 5 Database Migration and Eloquent

116

�One-to-One
A one-to-one relationship is typically related to the basic algebraic function. One input

passes through a function and gives one output, and they have one-to-one relation. At

the same time, the inverse is also true.

This concept is old and hugely popular among scientists, as it defines one key root of

mathematical operations.

Now, in our case, an article can belong to one user. In that scenario, the relationship

I am talking about is one-to-one, and the inverse is also true. One user can write at least

one article. But at the same time, one user can write many articles. So, the statement

“many articles belong to one user“ is also true. You will see those concepts in a minute.

Recall from Chapter 4 that the Article model class looks like this:

//code 5.5

//app/Article.php

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Article extends Model

{

 //

 protected $fillable = [

 'user_id', 'title', 'body',

];

 public function user() {

 return $this->belongsTo('App\User');

 }

 /**

 * Get the tags for the article

 */

 public function tags() {

 return $this->belongsToMany('App\Tag');

 }

Chapter 5 Database Migration and Eloquent

117

 /**

 * Get all of the profiles' comments.

 */

 public function comments(){

 return $this->morphMany('App\Comment', 'commentable');

 }

}

In the Article model class, you have probably noticed that relationships have been

defined not only as methods but also as powerful query builders. When you define

relationships, the methods provide powerful method chaining and querying capabilities.

{{ $article->user->name }}

So, from the Article model, you get the respective username of the author of that

particular article. In the app/User.php file, you’ll see this line of code:

public function article() {

 return $this->hasOne('App\Article');

 }

The first argument passed to the hasOne('App\Article') method is the name of the

related model. You have seen this line of code in app/Article.php:

public function user() {

 return $this->belongsTo('App\User');

 }

The relationship has been defined in both models, and once it has been defined, you

can retrieve the affiliated record using Eloquent’s dynamically defined properties. These

dynamically defined properties in Eloquent are so powerful that accessing relationship

methods is a cakewalk. It seems as if they were defined in the model. You have seen the

following example before:

{{ $article->user->name }}

You couldn’t have the username from the Article model if Eloquent had not

determined the foreign key of the relationship based on the model name. In this case,

the Article model mechanically assumes that it has a user_id foreign key. Here the

Chapter 5 Database Migration and Eloquent

118

parent is the User model, and it has a users table that has a custom $primaryKey column

(id). So, user_id of the Article model matches the ID of the parent User model.

Based on this assumption, you can take your application’s functionalities further.

You can grab the first article written by the user using the Article model. Consider this

line of code:

{{ $article->user->find($article->user_id)->article->title }}

It is same as User::find(1)->article->title. However, if you wanted to grab

the user’s first-ever written article this way, you would have to go back to the related

Controller class and add this line of code there. The flexibility of Eloquent ORM allows

you to get the same result using the Article model. So, let’s first look at the welcome.

blade.php code:

// code 5.7

// resources/views/welcome.blade.php

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="row">

 �<div class="col-md-8 blog-main col-lg-8 blog-main col-sm-8 blog-

main">

 <div class="blog-post">

 <ul class="list-group">

 @foreach($articles as $article)

 <li class="list-group-item">

 <h2 class="blog-post-title">

 �<li class="list-group-item"><a href="/articles/{{

$article->id }}">{{ $article->title }}

 </h2>

 @endforeach

 </div>

 <nav class="blog-pagination">

 Older

 Newer

 </nav>

Chapter 5 Database Migration and Eloquent

119

 </div>

 <aside class="col-md-4 blog-sidebar">

 <div class="p-3">

 �<h3 class="blog-post-title">This week you showcase the

articles

 Written by <p></p>

 �user_id }}/articles">

{{ $article->user->name }}

 </h3>

 Showing the first four results<p></p>

 <italic>His first article is:</italic>

 <p></p>

 user->article->id }}">

 �{{ $article->user->find($article->user_id)->article->

title }}

 <hr class="linenums" color="red">

 <h4 class="font-italic">Tags Cloud</h4>

 @foreach($tags as $tag)

 {{ $tag->tag }}...

 @endforeach

 </div>

 </aside>

 </div>

</div>

@endsection

In the lower part of the file welcome.blade.php, you should change a segment to

accommodate a one-to-one relation between the article and user, as shown here:

// code 5.7

// resources/views/welcome.blade.php

<aside class="col-md-4 blog-sidebar">

 <div class="p-3">

 �<h3 class="blog-post-title">This week we showcase the articles

 Written by <p></p>

Chapter 5 Database Migration and Eloquent

120

 �user_id }}/articles">

{{ $article->user->name }}

 </h3>

 Showing the first four results<p></p>

 <italic>His first article is:</italic>

 <p></p>

 user->article->id }}">

 �{{ $article->user->find($article->user_id)->article-

>title }}

 <hr class="linenums" color="red">

 <h4 class="font-italic">Tags Cloud</h4>

 @foreach($tags as $tag)

 {{ $tag->tag }}...

 @endforeach

 </div>

 </aside>

Now the front page looks like Figure 5-1.

Figure 5-1.  Home page of the content management application

Chapter 5 Database Migration and Eloquent

121

Let’s move on to the one-to-many relationship.

�One-to-Many
Remember, a user has many articles, and an article has many tags. A user also has many

tags. A user has many comments, and these relations between them go on and on. These

all indicate a type of Eloquent relationship: one-to-many.

On the home page of the application, you have a link to all the articles written by the

user. In the top-left sidebar of the home page, you can click the user’s name and read all

the articles and a short profile also.

The link on the home page looks like this:

user_id }}/articles">{{ $article->user->name

}}

The URI is very expressive; it reads like this: users/1/articles. This means you

want to read all the articles by the user with an ID of 1. This is an ideal candidate for a

one-to-many relationship. On this page, you can also show the user’s profile.

Let’s work on registering the web routes. Here is the routes/web.php code as a

whole:

//code 5.8

// routes/web.php

Auth::routes();

Route::get('/home', 'HomeController@index')->name('home');

Route::resources([

 'users' => 'UserController',

 'profiles' => 'ProfileController',

 'articles' => 'ArticleController',

 'comments' => 'CommentController'

]);

Route::get('/users/{id}/articles', 'ArticleController@articles');

Route::get('/', 'ArticleController@main');

In routes/web.php, you define the relationship in this way: Route::get('/users/

{id}/articles', 'ArticleController@articles'). This means you should

create the articles() method in the ArticleController. Let’s look at the code of

Chapter 5 Database Migration and Eloquent

122

ArticleController as a whole first; after that, you will take a look at the articles

method individually:

// code 5.9

// app/HTTP/Controllers/ArticleController.php

<?php

namespace App\Http\Controllers;

use App\Article;

use App\Country;

use App\User;

use App\Tag;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Auth;

class ArticleController extends Controller

{

 /**

 * Display a listing of the resource.

 *

 * @return \Illuminate\Http\Response

 */

 public function index()

 {

 $articles = Article::orderBy('created_at','desc')->paginate(4);

 �//$articles = Article::where('active', 1)->orderBy('title',

'desc')->take(10)->get();

 $users = User::all();

 $tags = Tag::all();

 //$posts = Article::orderBy('created_at','desc')->paginate(3);

 �return view('articles.index', compact('articles', 'users',

'tags'));

 }

Chapter 5 Database Migration and Eloquent

123

 public function main()

 {

 �$articles = Article::where('user_id', 1)->orderBy('title', 'desc')-

>take(4)->get();

 $tags = Tag::all();

 return view('welcome', ['articles' => $articles, 'tags' => $tags]);

 }

 /**

 * Show the form for creating a new resource.

 *

 * @return \Illuminate\Http\Response

 */

 public function create()

 {

 //

 }

 /**

 * Store a newly created resource in storage.

 *

 * @param \Illuminate\Http\Request $request

 * @return \Illuminate\Http\Response

 */

 public function store(Request $request)

 {

 //

 }

 /**

 * Display the specified resource.

 *

 * @param \App\Article $article

 * @return \Illuminate\Http\Response

 */

Chapter 5 Database Migration and Eloquent

124

 public function show(Article $article)

 {

 $tags = Article::find($article->id)->tags;

 $article = Article::find($article->id);

 $comments = $article->comments;

 $user = User::find($article->user_id);

 $country = Country::where('id', $user->country_id)->get()->first();

 return view('articles.show', compact('tags','article',

 'country', 'comments', 'user'));

 }

 /**

 * Display the specified resource.

 *

 * @param \App\Article $article

 * @return \Illuminate\Http\Response

 */

 public function articles($id)

 {

 $user = User::find($id);

 return view('articles.articles', compact('user'));

 }

 /**

 * Show the form for editing the specified resource.

 *

 * @param \App\Article $article

 * @return \Illuminate\Http\Response

 */

 public function edit(Article $article)

 {

 //

 }

Chapter 5 Database Migration and Eloquent

125

 /**

 * Update the specified resource in storage.

 *

 * @param \Illuminate\Http\Request $request

 * @param \App\Article $article

 * @return \Illuminate\Http\Response

 */

 public function update(Request $request, Article $article)

 {

 //

 }

 /**

 * Remove the specified resource from storage.

 *

 * @param \App\Article $article

 * @return \Illuminate\Http\Response

 */

 public function destroy(Article $article)

 {

 //

 }

}

Now, you can take a look at the articles method to understand how one-to-many

relations work here. Here is the code:

public function articles($id)

 {

 $user = User::find($id);

 return view('articles.articles', compact('user'));

 }

Here you pass the user ID, and using the Eloquent method find(id), you get the

respective user. After that, you pass the user object to the resource/views/articles/

articles.blade.php file. Next, you should look at both the User and Article models to

recall how to define the one-to-many relationship. A user has many articles.

Chapter 5 Database Migration and Eloquent

126

So, you wrote this in Chapter 4:

// code 5.10

// app.User.php

public function articles() {

 return $this->hasMany('App\Article');

 }

At the same time, you need to look at the inverse model relationship in the

Article model. Say you want to access all of a user’s articles. You have already defined

a relationship to allow an article to access its parent user as part of the one-to-one

relationship. This is enough to define the inverse of a hasMany relationship, as shown

here:

// code 5.11

// app/Article.php

public function user() {

 return $this->belongsTo('App\User');

 }

Let’s see how you can access all the articles written by one particular user. In the top-

left sidebar of the home page of your application, you have the link that takes users to

the desired page. I’m not going to show every line of articles.blade.php anymore. For

brevity, you will look at the vital portions, starting with this:

// code 5.14

// resources/views/articles.blade.php

<ul class="list-group">

 �<div class="panel-heading">All Articles by <a href="/users/{{

$user->id }}">{{ $user->name }} </div>

 @foreach($user->articles as $article)

 <li class="list-group-item">

 <h2 class="blog-post-title">

 �id }}">{{ $article->

title }}

 </h2>

Chapter 5 Database Migration and Eloquent

127

 @endforeach

...

<div class="p-3">

 �<h3 class="blog-post-title">Know about {{ $article->user-

>name }}

 </h3>

 <hr class="linenums" color="red">

 <div class="panel panel-default">

 �<div class="panel-heading">{{ $article->user->name }}'s

Profile</div>

 <div class="panel-body">

 �<li class="list-group-item-info">Name : {{ $article-

>user->name }}

 �<li class="list-group-item-info">Email: {{ $article->

user->email }}

 �<li class="list-group-item-info">City: {{ $article->

user->profile->city }}

 �<li class="list-group-item-info">About: {{ $article->

user->profile->about }}

 </div>

 </div>

 </div>

Look at this line: @foreach($user->articles as $article). Since the User model

has a one-to-many relationship with the Article model, you can access all the articles

by any particular user quite easily.

As you have probably noticed, I have chained conditions onto the query. Since the

relationship has been defined, you can access the collection of articles by accessing

the articles property. This is the magic of Eloquent: it provides “dynamic properties.”

Therefore, you can access relationship methods as if they were defined as properties

on the model. Go to http://localhost:8000/users/1/articles in your browser (see

Figure 5-2).

Chapter 5 Database Migration and Eloquent

128

The one-to-one relationship between User and Profile allows you to get the

profile data of any particular user as well (Figure 5-2). The magic of Eloquent dynamic

properties is happening splendidly. You define them in the models and later access them

in the controller. The controller transports that data to the views.

Before explaining many-to-many relationship, I’ll discuss one more important

concept: dependency injection and separation of concerns.

�Separation of Concerns
The previous pieces of code in the controllers are concise, but you are unable to test

them without hitting the database directly. Your Eloquent ORM is tightly coupled

with your controller. This is not desirable because this is violating the design principle

known as separation of concerns that demands that every class should have a single

responsibility and that should be encapsulated by the class itself. In other words, your

controller should not know the data source. In this case, your web layer and the data

access layer are tightly coupled. To decouple them, you can inject a user repository class

that can be coupled with Eloquent ORM, making your Controller class free.

Figure 5-2.  All articles by a single user along with the profile

Chapter 5 Database Migration and Eloquent

129

To do that, you can add one Repositories folder in app. Inside the Repositories

folder, you can add two more folders: DBRepositories and Interfaces. Inside the

Interfaces folder, you can add an interface called UserRepositoryInterface.

//code 5.15

//app/Repositories/ Interfaces/UserRepositoryInterface.php

<?php namespace RepositoryInterface;

 interface UserRepositoryInterface {

 public function all();

}

Now, inside the DBRepositories folder, you can add a database repository class.

// code 5.15

//app/ Repositories/DBRepositories/DBUserRepository.php

<?php namespace RepositoryDB;

use RepositoryInterface\UserRepositoryInterface as UserRepositoryInterface;

use App\User;

use Illuminate\Http\Request;

class DBUserRepository implements UserRepositoryInterface {

 public function all() {

 return User::all();

 }

}

Now, you want to inject this database repositories class into your controller.

However, to make it work, you need to update your composer.json file a little bit.

//code 5.16

//composer.json

"autoload": {

 "classmap": [

 "database/seeds",

 "database/factories"

],

 "psr-4": {

Chapter 5 Database Migration and Eloquent

130

 "App\\": "app/",

 "RepositoryInterface\\": "app/Repositories/Interfaces/",

 "RepositoryDB\\": "app/Repositories/DBRepositories/"

 }

 },

You need to run this command on your terminal first, before modifying the User

controller.

// code 5.17

$ composer dump-autoload

Cannot create cache directory /home/ss/.composer/cache/repo/https---

packagist.org/, or directory is not writable. Proceeding without cache

Cannot create cache directory /home/ss/.composer/cache/files/, or directory

is not writable. Proceeding without cache

Generating optimized autoload files

> Illuminate\Foundation\ComposerScripts::postAutoloadDump

> @php artisan package:discover

Discovered Package: beyondcode/laravel-dump-server

Discovered Package: fideloper/proxy

Discovered Package: laravel/tinker

Discovered Package: nesbot/carbon

Discovered Package: nunomaduro/collision

Package manifest generated successfully.

Now you can modify your UserController in this way:

// code 5.18

//app/HTTP/Controllers/UserController.php

<?php

namespace App\Http\Controllers;

use App\User;

use Illuminate\Http\Request;

use RepositoryDB\DBUserRepository as DBUserRepository;

//use RepositoryInterface\UserRepositoryInterface as UserRepositoryInterface;

Chapter 5 Database Migration and Eloquent

131

class UserController extends Controller {

 public $users;

 public function __construct(DBUserRepository $users) {

 $this->users = $users;

 }

 public function index(){

 $users = $this->users->all();

 return view('users.index', compact('users'));

 }

}

Your controller does not know the database source. It is completely ignorant of the

data access layer. It only transports the database repositories objects to the view. The

resources/views/users/index.blade.php code will look like this:

//code 5.19

//resources/views/users/index.blade.php

@foreach($users as $user)

 <li class="list-group-item">

 <h2 class="blockquote-reverse">

 id }}">{{ $user->name }}

 </h2>

 @endforeach

Now type http://localhost:8000/users in your browser, and you will get the

output in Figure 5-3.

Chapter 5 Database Migration and Eloquent

132

This dependency injection is good for testability. At the same time, it gives you ample

chance to decouple your classes and keep the principle of separation of concerns intact.

�Many-to-Many
An example of many-to-many relations here is articles and tags. It is slightly more

complicated than the one-to-one and one-to-many relations. When the many-to-many

relationship exists between articles and tags, the tags are shared by other articles. Many

articles may have one particular tag.

You have already created three tables: articles, tags, and article_tag.

Tip T here is one thing to remember here. Whenever you create a pivot table (here
article_tag), the naming must be in alphabetical order of the related model
names. Alphabetically, Article comes before Tag. So, you name this table as
article_tag. This table must contain the article_id and role_id columns.

Figure 5-3.  Output of all users

Chapter 5 Database Migration and Eloquent

133

I will discuss Tag and Comment later in detail; before that, I’d like to point out one key

concept carefully. It is obvious, from the relationships between models, that an article

has many tags, or vice versa. In plain words, this is perfectly logical. An article has many

tags indeed. Inversely, a tag may belong to many articles too. Keeping this logic in mind,

you can add the following code to your Article model:

// code 5.12

// app/Article.php

/**

 * Get the tags for the article

 */

 public function tags(){

 return $this->hasMany('App\Tag');

 }

Now you should get all tags that the article has. You can use this line of code in the

show() method of ArticleController.php:

public function show(Article $article)

 {

 $tags = Article::find($article->id)->tags;

 $article = Article::find($article->id);

 return view('articles.show', compact('article', 'tags'));

 }

Although this looks perfectly sane, it will produce errors like this:

“SQLSTATE[42S22]: Column not found: 1054 Unknown column

‘tags.article_id’ in ‘where clause’ (SQL: select * from `tags` where

`tags`.`article_id` = 14 and `tags`.`article_id` is not null) ◀”

Why did this happen? You used the same properties before in the User model. There

you accessed user ➤ articles quite easily without any trouble. Then why can’t you get

articles ➤ tags in the same manner?

Here, you need to understand one key concept. In this case, the one-to-many

relationship should allow Eloquent to assume that the foreign key in the Tag model is

article_id. That you don’t have in the tags table. Instead, you have a pivot table called

Chapter 5 Database Migration and Eloquent

134

article_tag where you have two foreign keys: article_id and tag_id. So, if you wrote

it like this:

// code 5.13

// app/Article.php

class Article extends Model

 {

 /**

 * Get the tags for the article.

 */

 public function tags()

 {

 return $this->hasMany('App\Tag');

 }

 }

it would throw an error. And that’s exactly what happens here.

Eloquent has the ability to determine the proper foreign key column on the Tag

model. It is a convention that Eloquent will take the snake_case name of the parent

model (here Article) and add the suffix _id. This means, in this case, Eloquent will

assume the foreign key on the Tag model is article_id. In this case, Eloquent didn’t find

the column tags.article_id and says that it is an unknown column.

Therefore, in the case of a one-to-many relationship, a foreign key should explicitly

be defined. Before migration, when you created the articles table, you added this line:

$table->integer('user_id');

So, be careful about using one-to-many relationships and keep this in mind. Here

the relationship between articles and tags is many-to-many. And for that you have a

pivot table between them. I will discuss this in detail in the next section.

Now you should define the many-to-many relationship by writing a method that

returns the result of the belongsToMany method. First, you define the tags method on

your Article model, as shown here:

// code 5.20

// app/Article.php

/**

 * Get the tags for the article

 */

Chapter 5 Database Migration and Eloquent

135

 public function tags() {

 return $this->belongsToMany('App\Tag');

 }

Once the relationship is defined, you can access the article’s tags through the

dynamic property of tags. In resources/views/articles/show.blade.php, you have

accessed the article’s tags in this way:

@foreach($article->tags as $tag)

 {{ $tag->tag }} ,

 @endforeach

The same is true for the role_user table. Here, role comes before the user. And

in the respective Role and User models, you have already defined the many-to-many

relationships by using the belongsTo and belongsToMany methods. Now, you want three

types of users: Administrator, Moderator, and Member. Since you have used Faker to create

three arbitrary words for the roles table, you need to change the name manually. Another

important thing is you don’t need too many administrators. So in the database/seeds/

DatabaseSeeder.php file, I have limited the number of rows to three by using this code:

factory(App\Role::class, 3)->create()->each(function($role){

 $ids = range(1, 2);

 shuffle($ids);

 $sliced = array_slice($ids, 1, 5);

 $role->users()->attach($sliced);

 });

In the next step, you change the UserController.php show() method to this:

public function show(User $user)

 {

 $roles = User::find($user->id)->roles;

 $user = User::find($user->id);

 return view('users.show', compact('user', 'roles'));

 }

Now, except for user 1, other users have no role at present. But user 1 has been

assigned to three roles by the Faker object. But for other users it would be different.

Since you have assigned a role to user 1, the other users have no roles to show up. These

users belong to the general member category.

Chapter 5 Database Migration and Eloquent

136

I am trying to keep things simple so that you can understand the model relations.

You want users to have some types of restrictions on their movements. Every user can

post, but unless the administrator gives permission, the post will not be published. The

same is true for the comments. You want your moderators to have some responsibilities,

such as the ability to edit any post.

Everything depends on the model relations you define in your models and respective

tables. By using them judiciously, you can build an awesome content management

application.

�Has-Many-Through
A distant relationship looks simple, but in reality, when you want to create one via an

intermediary table, it can be complicated.

In the example content management application, you have already seen many

interesting relationships. However, you have not found any distant relationship yet.

For an example, let’s suppose you have a table called countries. It has only an Id and

Name. Now let’s add an extra column in the users table; suppose it is country_id. As the

articles table has already been assigned user_id, it is possible to establish a distant

relationship between the Country and Article models (or, in other words, between the

countries and articles tables). A particular user belongs to a country; because of that,

you can grab all articles written by the users belonging to the same country.

Let’s continue developing the application to see how this has-many-through relation

works.

First create a Country model and a countries table using one command, as shown

here:

$ php artisan make:model Country -m

Let’s first define the Country model.

// code 5.21

// app/Country.php

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

Chapter 5 Database Migration and Eloquent

137

class Country extends Model

{

 protected $fillable = [

 'name'

];

 public function users() {

 return $this->hasMany('App\User');

 }

 public function articles(){

 return $this->hasManyThrough('App\Article', 'App\User');

 }

}

Let me explain this code. A Country model will probably have many users. The

second method, articles, returns a special has-many-through relationship between

two models, Article and User, as I have mentioned. Because of this method, you can

access all the articles for any given country.

In the countries table, you must have this method ready before you populate the

table with Faker.

// code 5.22

// database/migrations/countries table

public function up()

 {

 Schema::create('countries', function (Blueprint $table) {

 $table->increments('id');

 $table->string('name');

 $table->timestamps();

 });

 }

You also need to update your users table like this:

// database/migrations/users table

public function up()

 {

Chapter 5 Database Migration and Eloquent

138

 Schema::create('users', function (Blueprint $table) {

 $table->increments('id');

 $table->integer('country_id');

 $table->string('name');

 $table->string('email')->unique();

 $table->timestamp('email_verified_at')->nullable();

 $table->string('password');

 $table->rememberToken();

 $table->timestamps();

 });

 }

You have to update your User model with this method:

public function country() {

 return $this->belongsTo('App\Country');

 }

Next, you need to update your UserFactory code in this way:

// database/factories/UserFactory.php

$factory->define(App\User::class, function (Faker $faker) {

 return [

 'country_id' => $faker->randomDigit,

 'name' => $faker->name,

 'email' => $faker->unique()->safeEmail,

 �'password' => '$2y$10$TKh8H1.PfQx37YgCzwiKb.

KjNyWgaHb9cbcoQgdIVFlYg7B77UdFm', // secret

 'remember_token' => str_random(10),

];

});

Finally, you need to add this line to the database seeder file.

// database/seeds/DatabaseSeeder.php

factory(App\Country::class, 20)->create();

Chapter 5 Database Migration and Eloquent

139

Now you can run this command to populate your tables with new Faker data:

$ php artisan migrate:refresh –seed

To see the effect, you must open ArticleController and update the show() method

this way:

// code 5.51

//app/HTTP/Controllers/ ArticleController.php

public function show(Article $article)

 {

 $tags = Article::find($article->id)->tags;

 $article = Article::find($article->id);

 $user = User::find($article->user_id);

 $country = Country::where('id', $user->country_id)->get()->first();

 �return view('articles.show', compact('article', 'tags',

'country'));

 }

You have sent three objects, article, tags, and country, to your views. So, let’s see

the updated code of resources/views/articles/show.blade.php:

//code 5.23

//resources/views/articles/show.blade.php

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="row">

 <div class="col-md-12 col-md-offset-2">

 <div class="panel panel-default">

 <div class="panel-heading">

 �<h3 class="pb-3 mb-4 font-italic border-bottom">{{

$article->title }}</h3> by

 <p>{{ $article->user->name }}</p>

 </div>

Chapter 5 Database Migration and Eloquent

140

 <div class="panel-body">

 <li class="list-group-item">{{ $article->body }}

 Tags:

 @foreach($tags as $tag)

 {{ $tag->tag }}...

 @endforeach

 <li class="list-group-item-info">Other Articles by

 <p>

 �user_id }}/

articles">{{ $article->user->name }}

 </p>

 This user belongs to {{ $country->name }}<p></p>

 <h3 class="blog-post">

 All articles from {{ $country->name }}

 </h3>

 @foreach($country->articles as $article)

 <li class="list-group-item">

 id }}">

 {{ $article->title }}

 @endforeach

 </div>

 </div>

 </div>

 </div>

</div>

@endsection

Now if you click any article from the main articles page, you may have a view like

Figure 5-4 where you get all articles for any given country.

Chapter 5 Database Migration and Eloquent

141

How does this happen? What are the mechanisms behind it? Consider this code in

the Article model:

/**

 * Get all of the posts for the country.

 */

 public function articles()

 {

 return $this->hasManyThrough('App\Article', 'App\User');

 }

As you have seen, you have accessed articles by the Country model and got all the

articles for a given country. So, the first argument passed to the hasManyThrough method

is the name of the final model (here, Article) you want to access. The second argument

is the name of the intermediate model (here, User).

Figure 5-4.  Accessing all articles for a given country, here from Cook Islands

Chapter 5 Database Migration and Eloquent

142

To run this mechanism without any problems, typical Eloquent foreign key

conventions are used. Why are they needed? Basically, they perform the relationship’s

queries. You can customize the keys of the relationship. To do that, you can follow this

convention where you may pass them as the third, fourth, fifth, and sixth arguments:

 class Country extends Model

 {

 public function articles()

 {

 return $this->hasManyThrough(

 'App\Article',

 'App\User',

 'country_id', // Foreign key on users table...

 'user_id', // Foreign key on articles table...

 'id', // Local key on countries table...

 'id' // Local key on users table...

);

 }

 }

This has-many-through relationship is one of the strongest features of Laravel. So, be

adventurous and use it to make your application truly awesome.

In the next section, I will discuss another great feature of Laravel model relations:

polymorphic relationships that handle more complex relations.

�Polymorphic Relations
Think about a model that belongs to more than one other model on a single association.

Suppose you have a model called Comment. The users of your application can comment

on articles written by other users. This is not at all difficult to build. Now, you also want

one user to be able to comment on the profile of more than one other user. You can

always bridge the Comment model either with the Article model or with the Profile

model. You have seen how one-to-one, one-to-many, and many-to-many relations work.

However, it is difficult to imagine users of your application commenting on both

articles and profiles using a single comment table. Polymorphic relations can handle this;

with them, you can use a single comment table for both cases.

Chapter 5 Database Migration and Eloquent

143

Moreover, you don’t need any assistance from a pivot table to make it happen. All

you need are two tables like articles and profiles, which have no direct relations with

the comment table. Articles may have three simple columns, such as id, title, and body;

and the profiles table may have two or three simple columns such as id, name, and

location. Here the most interesting part is played by the comments table. It has columns

like this: id, body, commentable_id, and commentable_type.

The all-important columns to note are the last two: commentable_id and

commentable_type. The commentable_id column will contain the ID value of either

articles or profiles. On the other hand, the commentable_type column will contain

the class name of the owning model. When you post a comment on an article, the

commentable_type column will contain a value like App\Article that represents the

owning model. Eloquent ORM decides which type of owning model to return while

accessing the commentable relation.

You have had enough theory! Let’s start coding and see how you can apply this

polymorphic relationship in the content management application.

�The Problem
Say you want your application to reflect this polymorphic relationship between the

articles, profiles, and comments table. You should do this in such a way that each

article page will show how many commentators have posted comments on that

particular article. You also want to show the user’s name who has posted that comment.

The same rule applies to the profiles table also. Any user can come and post on any

profile page.

Since you want each comment to have a username associated with it, let’s add

another column called user_id.

You should plan your database seeder class in a new way so that it will populate

the database tables like you want. The other tables were settled before, but the user_id

column of the comments table should have different user ID. You have another great

challenge ahead: the commentable_type column of the comments table should shuffle the

class name of the two owning models: Article and Profile. You need to design your

database seeder file in that way. You’ll see how in the next section.

Chapter 5 Database Migration and Eloquent

144

�The Solution
Create the Comment model and comments table by issuing a single command, as shown

here:

$ php artisan make:model Comment -m

Let’s first start with the comments table code:

//code 5.24

//database/migrations/comments table

class CreateCommentsTable extends Migration

{

 /**

 * Run the migrations.

 *

 * @return void

 */

 public function up()

 {

 Schema::create('comments', function (Blueprint $table) {

 $table->increments('id');

 $table->integer('user_id');

 $table->text('body');

 $table->integer('commentable_id');

 $table->string('commentable_type');

 $table->timestamps();

 });

 }

 /**

 * Reverse the migrations.

 *

 * @return void

 */

Chapter 5 Database Migration and Eloquent

145

 public function down()

 {

 Schema::dropIfExists('comments');

 }

}

Next you will see the full code snippets of the models: Comment, Article, and

Profile. Let’s start with the Comment model code, and the other two will follow it.

// code 5.25

// app/Comment.php

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Comment extends Model

{

 /**

 * Get all of the owning commentable models.

 */

 public function commentable(){

 return $this->morphTo();

 }

 public function user() {

 return $this->belongsTo('App\User');

 }

 public function users() {

 return $this->belongsToMany('App\User');

 }

 public function article() {

 return $this->belongsTo('App\Article');

 }

Chapter 5 Database Migration and Eloquent

146

 public function articles() {

 return $this->belongsToMany('App\Article');

 }

}

Here is the code for the Article model:

// app/Article.php

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Article extends Model

{

 //

 protected $fillable = [

 'user_id', 'title', 'body',

];

 public function user() {

 return $this->belongsTo('App\User');

 }

 /**

 * Get the tags for the article

 */

 public function tags() {

 return $this->belongsToMany('App\Tag');

 }

 /**

 * Get all of the profiles' comments.

 */

 public function comments(){

 return $this->morphMany('App\Comment', 'commentable');

 }

}

Chapter 5 Database Migration and Eloquent

147

Next, you will see the code of the Profile model, with an added line about

comments:

// app/Profile.php

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Profile extends Model

{

 /**

 * The attributes that are mass assignable.

 *

 * @var array

 */

 protected $fillable = [

 'user_id', 'city', 'about',

];

 public function user() {

 return $this->belongsTo('App\User');

 }

 /**

 * Get all of the profiles' comments.

 */

 public function comments(){

 return $this->morphMany('App\Comment', 'commentable');

 }

}

You also need to update the User model a little bit. Here is the full code snippet:

// app/User.php

<?php

namespace App;

Chapter 5 Database Migration and Eloquent

148

use Illuminate\Notifications\Notifiable;

use Illuminate\Foundation\Auth\User as Authenticatable;

class User extends Authenticatable

{

 use Notifiable;

 /**

 * The attributes that are mass assignable.

 *

 * @var array

 */

 protected $fillable = [

 'name', 'email', 'password',

];

 /**

 * The attributes that should be hidden for arrays.

 *

 * @var array

 */

 protected $hidden = [

 'password', 'remember_token',

];

 public function profile() {

 return $this->hasOne('App\Profile');

 }

 public function article() {

 return $this->hasOne('App\Article');

 }

 public function articles() {

 return $this->hasMany('App\Article');

 }

Chapter 5 Database Migration and Eloquent

149

 public function role() {

 return $this->hasOne('App\Role');

 }

 public function roles() {

 return $this->hasMany('App\Role');

 }

 public function country() {

 return $this->belongsTo('App\Country');

 }

 public function comment() {

 return $this->hasOne('App\Comment');

 }

 public function comments() {

 return $this->hasMany('App\Comment');

 }

}

Now you have the models in place, ready to interact with each other. Let’s populate

all the tables by designing a User factory and database seeder files properly.

First, here is the user factory’s full code snippet:

//code 5.26

// database/factories/UserFactory.php

<?php

use Faker\Generator as Faker;

/*

|--

| Model Factories

|--

|

| This directory should contain each of the model factory definitions for

| your application. Factories provide a convenient way to generate new

| model instances for testing / seeding your application's database.

|

*/

Chapter 5 Database Migration and Eloquent

150

$factory->define(App\User::class, function (Faker $faker) {

 return [

 �'country_id' => $faker->biasedNumberBetween($min = 1, $max = 20,

$function = 'sqrt'),

 'name' => $faker->name,

 'email' => $faker->unique()->safeEmail,

 �'password' => '$2y$10$TKh8H1.PfQx37YgCzwiKb.

KjNyWgaHb9cbcoQgdIVFlYg7B77UdFm', // secret

 'remember_token' => str_random(10),

];

});

$factory->define(App\Article::class, function (Faker $faker) {

 return [

 'user_id' => App\User::all()->random()->id,

 'title' => $faker->sentence,

 'body' => $faker->paragraph(random_int(3, 5))

];

});

$factory->define(App\Profile::class, function (Faker $faker) {

 return [

 'user_id' => App\User::all()->random()->id,

 'city' => $faker->city,

 'about' => $faker->paragraph(random_int(3, 5))

];

});

$factory->define(App\Tag::class, function (Faker $faker) {

 return [

 'tag' => $faker->word

];

});

$factory->define(App\Role::class, function (Faker $faker) {

 return [

 'name' => $faker->word

Chapter 5 Database Migration and Eloquent

151

];

});

$factory->define(App\Country::class, function (Faker $faker) {

 return [

 'name' => $faker->country

];

});

$factory->define(App\Comment::class, function (Faker $faker) {

 return [

 �'user_id' => $faker->biasedNumberBetween($min = 1, $max = 10,

$function = 'sqrt'),

 'body' => $faker->paragraph(random_int(3, 5)),

 'commentable_id' => $faker->randomDigit,

 'commentable_type' => function(){

 $input = ['App\Article', 'App\Profile'];

 $model = $input[mt_rand(0, count($input) - 1)];

 return $model;

 }

];

});

Note I t is strongly recommended that you visit the GitHub repositories of the PHP
faker. This will give you an idea of how you can use different attributes or methods
to populate your application with fake data.

In the previous code snippet (code 5.26), the last section is interesting, as you have

dealt with the Comment model before. Let’s see that part again and try to understand what

you have actually done.

$factory->define(App\Comment::class, function (Faker $faker) {

 return [

 �'user_id' => $faker->biasedNumberBetween($min = 1, $max = 10,

$function = 'sqrt'),

Chapter 5 Database Migration and Eloquent

152

 'body' => $faker->paragraph(random_int(3, 5)),

 'commentable_id' => $faker->randomDigit,

 'commentable_type' => function(){

 $input = ['App\Article', 'App\Profile'];

 $model = $input[mt_rand(0, count($input) - 1)];

 return $model;

 }

];

});

The first line deals with user_id, and you know that you have ten users so far. You

could have made it bigger, but that would not serve the purpose here of understanding

model relations. You use a special faker method that will check for a range (1 to 10) and

populate the table accordingly.

Populating the commentable_type column has been a real challenge as you want to

populate it with both the App\Article and App\Profile model class names randomly.

So, you use an anonymous function that returns an array and shuffles out two values.

Next, you will see the database seeder file. Although you are updating only the

comment part, you should take a look at the full code snippet, shown here:

//code 5.27

//database/seeds/DatabaseSeeder.php

<?php

use Illuminate\Database\Seeder;

class DatabaseSeeder extends Seeder

{

 /**

 * Seed the application's database.

 *

 * @return void

 */

 public function run()

 {

 // $this->call(UsersTableSeeder::class);

 // $this->call(UsersTableSeeder::class);

Chapter 5 Database Migration and Eloquent

153

 factory(App\User::class, 10)->create()->each(function($user){

 $user->profile()->save(factory(App\Profile::class)->make());

 });

 factory(App\Tag::class, 20)->create();

 factory(App\Country::class, 20)->create();

 factory(App\Comment::class, 50)->create();

 factory(App\Article::class, 50)->create()->each(function($article){

 $ids = range(1, 50);

 shuffle($ids);

 $sliced = array_slice($ids, 1, 20);

 $article->tags()->attach($sliced);

 });

 factory(App\Role::class, 3)->create()->each(function($role){

 $ids = range(1, 2);

 shuffle($ids);

 $sliced = array_slice($ids, 1, 5);

 $role->users()->attach($sliced);

 });

 }

}

Now you are ready to refresh the seed data with the following command that will

populate all the tables:

$ php artisan migrate:refresh –seed

You have successfully seeded your tables with fake data, so now you are also ready

to test your applications. Before moving on to that final part, let’s see how your database

tables look. First, let’s open your phpMyAdmin interface and select the database you have

used to test this application (Figure 5-5).

Chapter 5 Database Migration and Eloquent

154

Next, let’s see how your comments table looks in phpMyAdmin. You will also look at it in

a terminal using the MySQL prompt. But before that, you can take a look at phpMyAdmin,

as shown in Figure 5-6.

Figure 5-5.  Your full database in PHPMyAdmin

Chapter 5 Database Migration and Eloquent

155

You can use the database laravelmodelrelations in your terminal, and by issuing

the SELECT * FROM COMMENTS command, you can view how your tables have been

populated with the fake data.

//code 5.28

mysql> USE laravelmodelrelations

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

mysql> SHOW TABLES;

+---------------------------------+

| Tables_in_laravelmodelrelations |

+---------------------------------+

| article_tag |

| articles |

| comments |

| countries |

Figure 5-6.  The comments table has been populated with fake data

Chapter 5 Database Migration and Eloquent

156

| migrations |

| password_resets |

| profiles |

| role_user |

| roles |

| tags |

| users |

+---------------------------------+

11 rows in set (0.00 sec)

mysql> SELECT * FROM COMMENTS;

By issuing such commands, you can also view the corresponding database tables in

the terminal. So now you have successfully built all your database tables, and you can

concentrate on building your application through controller and views.

�Summarizing All Relations
Let’s check all the relations one after another. The Article controller should be the first

candidate, where you will use the show() method to display a certain article that has

many functionalities attached to it.

You will find out who is the writer of the article and what country the article belongs

to. At the same time, you will grab all the articles representing that country. Another

important part is the comments section, where you will show all the comments

associated with a particular article. Who has written that comment? The username and a

link to the user’s profile page will also be given.

So, with this article page, you are going to use many features of model relations.

One-to-one, one-to-many, many-to-many, has-many-through, and finally polymorphic

relationships have been used in this page in one way or other.

You are going to view the full code snippets of ArticleController.php (although we

have avoided the insert and update parts so far).

//code 5.29

//app/HTTP/Controllers/ArticleController.php

<?php

Chapter 5 Database Migration and Eloquent

157

namespace App\Http\Controllers;

use App\Article;

use App\Country;

use App\User;

use App\Tag;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Auth;

class ArticleController extends Controller

{

 /**

 * Display a listing of the resource.

 *

 * @return \Illuminate\Http\Response

 */

 public function index()

 {

 $articles = Article::all();

 �//$articles = Article::where('active', 1)->orderBy('title',

'desc')->take(10)->get();

 $users = User::all();

 $tags = Tag::all();

 �return view('articles.index', compact('articles', 'users', 'tags'));

 }

 public function main()

 {

 �$articles = Article::where('user_id', 1)->orderBy('title', 'desc')-

>take(4)->get();

 $tags = Tag::all();

 return view('welcome', ['articles' => $articles, 'tags' => $tags]);

 }

Chapter 5 Database Migration and Eloquent

158

 /**

 * Display the specified resource.

 *

 * @param \App\Article $article

 * @return \Illuminate\Http\Response

 */

 public function show(Article $article)

 {

 $tags = Article::find($article->id)->tags;

 $article = Article::find($article->id);

 $comments = $article->comments;

 $user = User::find($article->user_id);

 $country = Country::where('id', $user->country_id)->get()->first();

 return view('articles.show', compact('tags','article',

 'country', 'comments', 'user'));

 }

 /**

 * Display the specified resource.

 *

 * @param \App\Article $article

 * @return \Illuminate\Http\Response

 */

 public function articles($id)

 {

 $user = User::find($id);

 return view('articles.articles', compact('user'));

 }

}

You are interested in the show() method currently, so let’s view that section of code

before you proceed any further.

public function show(Article $article)

 {

 $tags = Article::find($article->id)->tags;

 $article = Article::find($article->id);

Chapter 5 Database Migration and Eloquent

159

 $comments = $article->comments;

 $user = User::find($article->user_id);

 $country = Country::where('id', $user->country_id)->get()->first();

 return view('articles.show', compact('tags','article',

 'country', 'comments', 'user'));

 }

You should pass every object separately to the resources/views/articles/show.

blade.php page so that you can use model relations as you want.

The next code snippet is for the show.blade.php page. I am going to give all the code,

and afterward you will see how it looks in a browser.

// code 5.30

// resources/views/articles/show.blade.php

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="row">

 <div class="col-md-8 col-md-offset-2">

 <div class="panel panel-default">

 <div class="panel-heading">

 �<h3 class="pb-3 mb-4 font-italic border-bottom">{{

$article->title }}</h3> by

 <p>{{ $article->user->name }}</p>

 </div>

 <div class="panel-body">

 <li class="list-group-item">{{ $article->body }}

 Tags:

 @foreach($tags as $tag)

 {{ $tag->tag }}...

 @endforeach

 </div>

 <p></p>

 <div class="panel panel-default">

 <h3 class="pb-3 mb-4 font-italic border-bottom">

Chapter 5 Database Migration and Eloquent

160

 All Comments for this Article

 </h3>

 @foreach($user->profile->comments as $comment)

 <li class="list-group-item">{{ $comment->body }}

 <li class="list-group-item">by

 �user_id }}">{{ $comment-

>user->name }}

 @endforeach

 </div>

 </div>

 </div>

 <aside class="col-md-4 blog-sidebar">

 <div class="p-3">

 <h3 class="blog-post-title">

 This user belongs to {{ $country->name }}

 </h3>

 <li class="list-group-item-info">Other Articles by

 <p>

 �user_id }}/articles">{{

$article->user->name }}

 </p>

 <h3 class="blog-post">

 All articles from {{ $country->name }}

 </h3>

 <hr class="linenums" color="red">

 <div class="panel panel-default">

 <div class="panel-heading">

 @foreach($country->articles as $article)

 <li class="list-group-item">

 id }}">

 {{ $article->title }}

Chapter 5 Database Migration and Eloquent

161

 @endforeach

 </div>

 <hr class="linenums" color="red">

 </div>

 </div>

 </aside>

 </div>

</div>

@endsection

Now you can view the main articles page, which shows you every feature you have

incorporated in your application successfully. From the main articles page, you can

go to any particular article page and see how it is chained to the comments, users, and

countries.

You get everything in this page. The article’s title shows up on the top of the page.

Next comes the writer’s name and the body of the article. After that you have a link that

can take you to the other articles written by that writer. After that you have comments.

On the right side, you have the writer’s name, and you can see to which country the

writer belongs. You also have all other articles from that country (Figure 5-5).

You can emulate almost the same techniques to get one user’s profile page and show

the comments that have been written over time.

// code 5.31

// app/HTTP/Controllers/UserController.php

<?php

namespace App\Http\Controllers;

use App\User;

use App\Profile;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Auth;

use RepositoryDB\DBUserRepository as DBUserRepository;

Chapter 5 Database Migration and Eloquent

162

class UserController extends Controller

{

 public $users;

 public function __construct(DBUserRepository $users) {

 $this->users = $users;

 }

 /**

 * Display a listing of the resource.

 *

 * @return \Illuminate\Http\Response

 */

 public function index()

 {

 $users = $this->users->all();

 return view('users.index', compact('users'));

 }

 /**

 * Show the form for creating a new resource.

 *

 * @return \Illuminate\Http\Response

 */

 public function create()

 {

 //

 }

 /**

 * Store a newly created resource in storage.

 *

 * @param \Illuminate\Http\Request $request

 * @return \Illuminate\Http\Response

 */

Chapter 5 Database Migration and Eloquent

163

 public function store(Request $request)

 {

 //

 }

 /**

 * Display the specified resource.

 *

 * @param \App\User $user

 * @return \Illuminate\Http\Response

 */

 public function show(User $user)

 {

 //$roles = User::find($user->id)->roles;

 $user = User::find($user->id);

 return view('users.show', compact('user'));

 }

 /**

 * Show the form for editing the specified resource.

 *

 * @param \App\User $user

 * @return \Illuminate\Http\Response

 */

 public function edit(User $user)

 {

 //

 }

 /**

 * Update the specified resource in storage.

 *

 * @param \Illuminate\Http\Request $request

 * @param \App\User $user

 * @return \Illuminate\Http\Response

 */

Chapter 5 Database Migration and Eloquent

164

 public function update(Request $request, User $user)

 {

 //

 }

 /**

 * Remove the specified resource from storage.

 *

 * @param \App\User $user

 * @return \Illuminate\Http\Response

 */

 public function destroy(User $user)

 {

 //

 }

}

The code snippets of UserController.php are simple enough, although you have

passed only one user object to show.blade.php, through the show() method. This

handles many complex queries like getting all the comments that have been posted on

that particular page.

// code 5.32

// resources/views/users/show.blade.php

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="row">

 <div class="col-md-10 col-md-offset-2">

 <div class="panel panel-default">

 <div class="panel-heading">

 <h3 class="pb-3 mb-4 font-italic border-bottom">

 Profile of {{ $user->name }}

 </h3>

 </div>

 <div class="panel-body">

 Name :

Chapter 5 Database Migration and Eloquent

165

 <li class="list-group-item-info">{{ $user->name }}

 Email :

 <li class="list-group-item-info">{{ $user->email }}

 City :

 �<li class="list-group-item-info">{{ $user->profile->

city }}

 About :

 �<li class="list-group-item-info">{{ $user->profile->

about }}

 </div>

 <div class="panel panel-default">

 <hr>

 </div>

 <h3 class="pb-1 mb-2 font-italic border-bottom">

 All Comments about {{$user->name}}

 </h3>

 <div class="panel panel-default">

 @foreach($user->profile->comments as $comment)

 <li class="list-group-item">{{ $comment->body }}

 <li class="list-group-item">by

 �user_id }}">{{ $comment-

>user->name }}

 @endforeach

 </div>

 <div class="panel panel-default">

 <hr>

 </div>

 </div>

 </div>

 </div>

</div>

@endsection

Chapter 5 Database Migration and Eloquent

166

In the previous code snippet (code 5.61), the most interesting part is this:

@foreach($user->profile->comments as $comment)

 <li class="list-group-item">{{ $comment->body }}

 <li class="list-group-item">by

 <�a href="/users/{{ $comment->user_id }}">{{ $comment-

>user->name }}

 @endforeach

You set up a user profile by using a one-to-one relationship, and afterward you

connect that profile object to all the comments that have been posted to that page. Using

the comment object, you again go back to fetch the username associated with it.

Now you can display any user’s profile page in a unique way (Figure 5-7).

Figure 5-7.  User’s profile page

Chapter 5 Database Migration and Eloquent

167
© Sanjib Sinha 2019
S. Sinha, Beginning Laravel, https://doi.org/10.1007/978-1-4842-4991-8_6

CHAPTER 6

Handling User Data
and Redirects
A redirect is a kind of response; it’s part of a request-response cycle in Laravel. Therefore,

Laravel has designed it as a RedirectResponse instance or object that you can use

through the global helper function redirect(). It comes from Illuminate\Http\

RedirectResponse. You need it for many reasons. One of them is to validate a user’s data

or input. If the user input is invalid, it is a responsibility of a well-designed application to

send the user a message and return to the original state.

If you want to redirect to the previous location, another good method is the back()

global helper. You will learn about both in this chapter. I will first cover how the redirect

methods work in Laravel and how you can handle user data efficiently.

After that, I will show how to build an administrative dashboard in the news article

application that you’ve been working on.

So far, you have seen how to build a dynamic database-driven CRUD application

using a single administrative power. Later in this chapter, you will learn more about

web forms, validation, and finally how to build an administrative dashboard. The full

application code is available with the download for the book.

In Chapter 8, you will switch to another application, a company/project/task

management application, and learn more about role-based authentication, middleware,

and authorization. You’ll make that application role-based. In the news article

application in this chapter, though, you will deal with one administrator role. In the

next application, you will have project managers and general members along with the

administrator role, and they will have their own pages based on their roles. The general

members will not have administrative powers like the other two.

In Laravel there are several methods to implement authentication; in the news

application, you saw one method already. In Chapter 8, you will see the others.

168

�How Redirect Methods Work
There are some helper functions you need when you want to redirect users to a certain

location. Suppose there is a comment form where a user does not fill in some required

fields. In such cases, the submitted form is invalid, and the user must be redirected to the

previous location.

//code 6.1

 Route::post('user/profile', function () {

 // Validate the request...

 return back()->withInput();

 });

Besides the back() helper method, you can use the global redirect() method, and

you can use it anywhere in your application.

When you use Laravel form request validation, Laravel will redirect you with errors.

The given inputs are kept within the chained back()->withInput() method. You can

also write the previous code (6.1) like this:

Route::post('user/profile', function () {

 // Validate the request...

 return Redirect::back()->withInput(Input::all());

 });

Instead of global helper methods, you are using the Redirect and Input class

variables directly. In such cases, Request comes from Illuminate\Foundation\

Validation\ValidatesRequest.

Consider your ArticleController. In the index method, you are using the

redirect() helper to make it sure that the user is an administrator, as shown here:

//code 6.2

//app/Http//Controller/ArticleController.php

 public function index()

 {

 //

 if(Auth::user()->is_admin == 1){

 $articles = Article::orderBy('published_at', 'asc')->get();

 return view('articles.index', compact('articles'));

 }

Chapter 6 Handling User Data and Redirects

169

 else {

 return redirect('home');

 }

 }

From the Illuminate\Http\RedirectResponse class, you get the instances of

redirect responses. The class should contain the proper headers to redirect users to

another URL. There are several ways to generate a RedirectResponse instance. The

simplest one is of course to use the global redirect helper.

On the Redirector instance, you can call any method like route() to send the user

to another URL. Redirector is another class that comes from Illuminate\Routing, and

it generates many useful global helper methods. When your home page is secured, you

can safely redirect the user to home as it will by default choose the login page.

//code 6.3

return redirect()->route('login');

Let’s assume that your route has parameters; in such cases, you may pass them as

the second argument to the route method, as shown here:

//code 6.4

// For a route with the following URI: article/{id}

return redirect()->route('article', ['id' => 1]);

Redirecting to a controller action is one of the most common cases. You can pass the

controller and action name to the action method.

//code 6.5

return redirect()->action('ArticleController@index');

If your controller needs parameters, you can pass them as the second argument to

the action method.

//code 6.6

return redirect()->action(

 'ArticleController@show', ['id' => 1]

);

Chapter 6 Handling User Data and Redirects

170

You mostly use the redirect global helper for flashing session data.

Note  You use the session to store data because HTTP-driven applications are
stateless. When you flash session data, the data is saved for only the subsequent
HTTP request. Laravel provides this support automatically.

When you edit an article and redirect to a new URL, you may want to flash data to

a session. This is usually done at the same time because Laravel validates the data and

makes it ready for either saving in the database or returning as a status message, and you

want that data at the new URL. The following example explains it. You flash the success

message after performing the required actions.

Consider the ArticleController update() method shown here:

//code 6.7

 public function update(Request $request, $id)

 {

 //

 if(Auth::user()->is_admin == 1){

 if($file = $request->file('image')){

 $name = $file->getClientOriginalName();

 $post = Article::findOrFail($id);

 $post->title = $request->input('title');

 $post->body = $request->input('body');

 $post->published_at = $request->input('published_at');

 $post->image = $name;

 $post->save();

 $file->move('images/upload', $name);

 }

Chapter 6 Handling User Data and Redirects

171

 else {

 // code...

 $post = Article::findOrFail($id);

 $post->title = $request->input('title');

 $post->body = $request->input('body');

 $post->published_at = $request->input('published_at');

 $post->save();

 }

 if($post){

 �return redirect('articles')->with('status', 'Article

Updated!');

 }

 }

 }

It ends with the flashed message from the session. Now, in the articles index.blade.

php page, you can flash that message like this:

//code 6.8

//resources/views/articles/index.blade.php

 @if (session('status'))

 <div class="alert alert-success">

 {{ session('status') }}

 </div>

 @endif

When you use any article, it displays the flash-data, as shown in Figure 6-1.

Chapter 6 Handling User Data and Redirects

172

�What Is a Request Object?
On any controller method, you can type-hint the Illuminate\Http\Request class. The

incoming request instance will automatically be injected by the service container.

Consider the ArticleController store() method shown here:

//code 6.9

 public function store(Request $request)

 {

 if($file = $request->file('image')){

 $name = $file->getClientOriginalName();

 $post = new Article;

 $post->title = $request->input('title');

 $post->body = $request->input('body');

 $post->published_at = $request->input('date');

 $post->image = $name;

Figure 6-1.  Article updated with flash-data

Chapter 6 Handling User Data and Redirects

173

 $post->save();

 $file->move('images/upload', $name);

 }

 if($post){

 �return redirect('articles')->with('status', 'Article Created!');

 }

 }

You create new articles by using the incoming requests from the form inputs, like

this:

$post = new Article;

$post->title = $request->input('title');

//code incomplete

In the same way, in the edit() method, you can use the dependency injection and

route parameters to edit any existing article.

In such cases, your controller method is also expecting input from a route parameter.

You can still type-hint Illuminate\Http\Request and access the route parameter ID by

defining the controller update() method like this:

//code 6.10

 /**

 * Update the specified resource in storage.

 *

 * @param \Illuminate\Http\Request $request

 * @param int $id

 * @return \Illuminate\Http\Response

 */

 public function update(Request $request, $id)

 {

 //

 if(Auth::user()->is_admin == 1){

Chapter 6 Handling User Data and Redirects

174

 if($file = $request->file('image')){

 $name = $file->getClientOriginalName();

 $post = Article::findOrFail($id);

 $post->title = $request->input('title');

 $post->body = $request->input('body');

 $post->published_at = $request->input('published_at');

 $post->image = $name;

 $post->save();

 $file->move('images/upload', $name);

 }

 else {

 // code...

 $post = Article::findOrFail($id);

 $post->title = $request->input('title');

 $post->body = $request->input('body');

 $post->published_at = $request->input('published_at');

 $post->save();

 }

 if($post){

 return redirect('articles')->with('status', 'Article Updated!');

 }

 }

 }

There are two parameters; one is \Illuminate\Http\Request $request, and another

is int $id.

�How Requests and Responses Work
The full \Illuminate\Http\Response instances can contain anything. I’ll often return

a full view. By default Laravel 5.8 allows you to generate redirects to controller actions;

this means through controller actions you can return a view page. You don’t even have

to use the full namespace. Laravel’s RouteServiceProvider automatically resolves it.

Chapter 6 Handling User Data and Redirects

175

Whenever the user sends a request, the route or controller should return a response to

be returned to the user’s browser.

In that sense, I have already covered the main part of response instance in the

previous redirect section. Now Laravel provides several different ways to return

responses.

The most basic one is a string from a route or a controller; the framework

automatically converts a string to an HTTP response. You can also return an array that

Laravel converts into a JSON response. This is good for creating APIs. At the same time,

based on this mechanism, you can handle complex database records.

//code 6.11

Route::get('/', function () {

 return [1, 2, 3];

});

The same way you pass Eloquent collections from your route or controller, they will

also be automatically converted to JSON.

Thankfully, Laravel lets you return not only simple strings or arrays from the route or

controller; the Illuminate\Http\Response instance or object is extremely powerful and

can return a full view blade seamlessly. You will see this in the next sections.

�Introducing Validation
There are several different approaches to validate an application’s incoming data. By

default Laravel’s base controller class uses a ValidatesRequests trait that provides

a convenient method to validate incoming HTTP requests with a variety of powerful

validation rules.

Let’s see the different ways of validating requests one after another.

You may assume your ArticleController is resourceful. Or, you can use routes like

this:

//code 6.12

Route::get('article/create', 'ArticleController@create');

Route::post('article', 'ArticleController@store');

As usual, the GET route will display the form to create articles, and the POST route

will store the contents in your database.

Chapter 6 Handling User Data and Redirects

176

In such cases, ArticleController uses the default validation rules in the store

method like this:

//code 6.13

 /**

 * Store a new article content.

 *

 * @param Request $request

 * @return Response

 */

 public function store(Request $request)

 {

 $validatedData = $request->validate([

 'title' => 'required|unique:articles|max:255',

 'body' => 'required',

]);

 // The content is valid...

 }

The logic is simple for the body of the content, and it is required. For the title you

use some more flags, such as the title should not exceed 255 characters, the unique rule

must be maintained, and so on. If the validation rules pass, the controller will continue

functioning and execute in a normal way. If the validation fails, it will give you a proper

response, and the user can view it in the respective view template.

In the previous code, you can add more functionality such as validation attributes so

that if the first attribute fails, then the next one will not work anymore.

//code 6.14

 <?php

 namespace App\Http\Controllers;

 use Illuminate\Http\Request;

 use App\Http\Controllers\Controller;

 class ArticleController extends Controller

 {

Chapter 6 Handling User Data and Redirects

177

 /**

 * Show the form to create a new blog post.

 *

 * @return Response

 */

 public function create()

 {

 return view('article.create');

 }

 /**

 * Store a new blog post.

 *

 * @param Request $request

 * @return Response

 */

 public function store(Request $request)

 {

 $validatedData = $request->validate([

 'title' => 'bail|required|unique:articles|max:255',

 'body' => 'required',

]);

 // The content is valid...

 }

 }

In the previous code, this line is the important one:

'title' => 'bail|required|unique:articles|max:255',

Here you assign the bail rule to your attribute, and if the unique rule on the title

attribute fails, the max rule will not be checked. If you want to make your application

slightly faster, you may use this feature because it doesn’t check all the rules.

Chapter 6 Handling User Data and Redirects

178

Now, the question is, how will these errors be flashed? Well, Laravel has taken care

of this functionality automatically. All you need to do is add these lines of code in your

create.blade.php file:

//code 6.15

<!-- /resources/views/article/create.blade.php -->

 <h1>Create Article</h1>

 @if ($errors->any())

 <div class="alert alert-danger">

 @foreach ($errors->all() as $error)

 {{ $error }}

 @endforeach

 </div>

 @endif

Here it is extremely important to note that the $errors variable is bound to the view

by the Illuminate\View\Middleware\ShareErrorsFromSession middleware, which

is provided by the web middleware group. So, this $errors variable is always present in

your view template. You don’t have to define it explicitly. The $errors variable is always

defined and can be safely used.

Now, what happens when the request fields are nullable? You don’t want to

consider the null values as invalid. Laravel has thought about this already and includes

the TrimStrings and ConvertEmptyStringsToNull middleware in your application’s

global middleware stack. These middlewares are listed in the stack by the App\Http\

Kernel class. This gives you more choices; for that reason, you will often need to mark

your optional request fields as nullable. In such cases, you do not want the validator to

consider null values as invalid.

Chapter 6 Handling User Data and Redirects

179

Consider this code:

//code 6.16

$request->validate([

 'title' => 'bail|required|unique:articles|max:255',

 'body' => 'required',

 'publish_at' => 'nullable|date',

]);

In this code, you are mentioning categorically that the publish_at field may be

either null or a valid date representation. If you do not add the nullable modifier to the

rule definition, the validator will have considered null an invalid date.

Consider the ArticleController logic you have used so far. In addition, take a look

at the following create.blade.php file as an example to see how the validation works:

//code 6.17

//app/HTTP/Controllers/ArticleController.php

 public function store(Request $request)

 {

 //

 $validatedData = $request->validate([

 'title' => 'required|unique:articles|max:255',

 'body' => 'required',

]);

 if($file = $request->file('image')){

 $name = $file->getClientOriginalName();

 $post = new Article;

 $post->title = $request->input('title');

 $post->body = $request->input('body');

 $post->published_at = $request->input('date');

 $post->image = $name;

 $post->save();

 $file->move('images/upload', $name);

 }

Chapter 6 Handling User Data and Redirects

180

 if($post){

 return redirect('articles');

 }

 }

If you try to submit the form without the title and body fields, you get the response

shown in Figure 6-2.

Figure 6-2.  Displaying the error messages on the create.blade.php view template

You may want to create your own validate method on the request. In that case,

you may use the Validator facade, and the make method on the facade generates a new

validator instance.

Let’s see how it works in your ArticleController:

//code 6.18

//app/HTTP/Controllers/ArticleController.php

class ArticleController extends Controller

 {

 public function store(Request $request)

 {

 $validator = Validator::make($request->all(), [

Chapter 6 Handling User Data and Redirects

181

 'title' => 'required|unique:articles|max:255',

 'body' => 'required',

]);

 if ($validator->fails()) {

 return redirect('article/create')

 ->withErrors($validator)

 ->withInput();

 }

 //code...

 }

 }

This will give you the same effect you saw in Figure 6-2. It entirely depends on the

developer’s strategy which logic will be used, but there is no hard-and-fast rule that one

is more advantageous than the other.

�Web Form Fundamentals
Laravel provides an easy method to use Forms and HTML in your application, and it,

at the same time, helps you protect your site from cross-site request forgeries. I will talk

about this in a minute, but, before that, I will introduce two separate methods of using

forms.

There are two ways you can use forms in Laravel. First is the traditional method of

using form tags like you use generally, as shown here:

//code 6.19

<form method="POST" action="{{ route('login') }}">

@csrf

The second way is to use the laravelcollective/html package, as shown here:

//code

{!! Form::open(['url' => 'foo/bar']) !!}

 //

{!! Form::close() !!}

Chapter 6 Handling User Data and Redirects

182

If you want to use the traditional form input methods, it is perfectly okay. If you want

to use the second method using the Laravel html package, then you need to add a few

lines of code as new provider and class aliases.

Let’s first see how you can handle Laravel html and form packages. After that, you

will get a sneak preview of the traditional form input methods whose syntaxes are

completely different. However, both work seamlessly with Laravel, so what you will use

entirely depends on you.

�Using the Laravel HTML and Form Packages
First, you need to install the packages. Open your terminal and issue this command:

//code 6.20

composer require "laravelcollective/html":"^5.4.0"

Next, you need to add your new provider to the providers array of config/app.php,

as shown here:

//code 6.21

 'providers' => [

 // ...

 Collective\Html\HtmlServiceProvider::class,

 // ...

],

Finally, you need to add two class aliases to the aliases array of config/app.php:

//code 6.22

 'aliases' => [

 // ...

 'Form' => Collective\Html\FormFacade::class,

 'Html' => Collective\Html\HtmlFacade::class,

 // ...

],

Chapter 6 Handling User Data and Redirects

183

Suppose you need to create an article resource. The creation code in resources/

views/articles/create.blade.php will look like this:

//code 6.23

//resources/views/articles/create.blade.php

 <div class="card-header">

{!! Form::open(['url' => 'articles', 'files' => true]) !!}

<div class="form-group">

{!! Form::label('title', 'Title', ['class' => 'awesome']) !!}

{!! Form::text('title', 'Give a good title', ['class' => 'form-control']) !!}

</div>

<div class="form-group">

{!! Form::label('body', 'Body', ['class' => 'awesome']) !!}

{!! Form::textarea('body', 'Write your article Content', ['class' => 'form-

control']) !!}

</div>

<div class="form-group">

{!! Form::label('published_at', 'Published On', ['class' => 'awesome']) !!}

{!! Form::input('date', 'published_at', null, ['class' => 'form-control']) !!}

</div>

<div class="form-group">

{!! Form::file('image') !!}

</div>

<div class="form-group">

{!! Form::submit('Add Article', ['class' => 'btn btn-primary form-control']) !!}

</div>

{!! Form::close() !!}

</div>

Here, the first line is important to understand how the Laravel html and form

packages work. Consider this line:

{!! Form::open(['url' => 'articles', 'files' => true]) !!}

Here it is assumed that the method is POST; however, you could have done it like this:

{!! Form::open(array('url' => 'foo/bar', 'method' => 'put', 'files' => true)) !!}

Chapter 6 Handling User Data and Redirects

184

This says you are planning to upload an image for which you have used another key/

value pair of file options like this: files => true. This means your forms will accept the

file upload.

You can also open forms that point to the named routes or controller actions like

these instances:

//code 6.24

{!! Form::open(array('route' => 'route.name')) !!}

{!! Form::open(array('action' => 'Controller@method')) !!}

The form fields look like Figure 6-3 in a browser.

Figure 6-3.  Showing the form for creating the articles resource, with the Laravel
html/form packages working in the background

In your file ArticleController.php, you have two methods associated with this

form, as shown here:

//code 6.25

//app/HTTP/Controllers/ArticleController.php

 public function create()

 {

Chapter 6 Handling User Data and Redirects

185

 if(Auth::user()->is_admin == 1){

 return view('articles.create');

 }

 else {

 return redirect('home');

 }

 }

 public function store(Request $request)

 {

 if($file = $request->file('image')){

 $name = $file->getClientOriginalName();

 $post = new Article;

 $post->title = $request->input('title');

 $post->body = $request->input('body');

 $post->published_at = $request->input('date');

 $post->image = $name;

 $post->save();

 $file->move('images/upload', $name);

 }

You have already seen how Request objects work in Laravel. At the same time, you

can upload the image to the images/upload folder.

Now, whenever you create a new article as an administrator, a user session is

created, and a random token is placed in that session. Whenever you use the Form::open

method, with POST, PUT, or DELETE methods, the CSRF token will automatically be

added to the forms. This is built-in feature of the Laravel html and form packages.

When you use the traditional form options, you use them in a different way. I will

show that in a minute. Before that, let’s see how model binding works in Laravel while

you edit existing contents.

Chapter 6 Handling User Data and Redirects

186

�Model Binding
Suppose you want to edit an existing article that has an ID of 5. In a browser, it looks like

Figure 6-4.

You can update this article with new materials, updating everything including the

image and the publishing dates.

Let’s see how model binding works; here is the code for the resources/views/

articles/edit.blade.php page:

//code 6.26

//resources/views/articles/edit.blade.php

<div class="card-header">

{!! Form::model($article, ['route' => ['articles.update', $article->id],

'method' => 'PUT', 'files' => true]) !!}

<div class="form-group">

{!! Form::label('title', 'Title', ['class' => 'awesome']) !!}

{!! Form::text('title', "$article->title", ['class' => 'form-control']) !!}

</div>

Figure 6-4.  Showing the form for editing the existing articles resource

Chapter 6 Handling User Data and Redirects

187

<div class="form-group">

{!! Form::label('body', 'Body', ['class' => 'awesome']) !!}

{!! Form::textarea('body', "$article->body", ['class' => 'form-control']) !!}

</div>

<div class="form-group">

{!! Form::label('published_at', 'Published On', ['class' => 'awesome']) !!}

{!! Form::input('date', 'published_at', null, ['class' => 'form-control']) !!}

</div>

<div class="form-group">

{!! Form::file('image') !!}

</div>

<div class="form-group">

{!! Form::submit('Edit Article', ['class' => 'btn btn-primary form-

control']) !!}

</div>

{!! Form::close() !!}

</div>

You actually want to populate the form based on the contents of the Article model.

For that reason, you use the Form::model method, which in turn populates the input

fields with the existing data based on the resource ID.

Whenever you generate a form element like a text input field, the model’s value

matching the field’s name is automatically set as the field value. At the same time, let’s

see how the ArticleController methods work in this scenario.

//code 6.27

//app/HTTP/Controllers/ArticleController.php

 public function edit($id)

 {

 if(Auth::user()->is_admin == 1){

 $article = Article::findOrFail($id);

 return view('articles.edit', compact('article'));

 }

Chapter 6 Handling User Data and Redirects

188

 else {

 return redirect('home');

 }

 }

 public function update(Request $request, $id)

 {

 if(Auth::user()->is_admin == 1){

 if($file = $request->file('image')){

 $name = $file->getClientOriginalName();

 $post = Article::findOrFail($id);

 $post->title = $request->input('title');

 $post->body = $request->input('body');

 $post->published_at = $request->input('published_at');

 $post->image = $name;

 $post->save();

 $file->move('images/upload', $name);

 }

 else {

 $post = Article::findOrFail($id);

 $post->title = $request->input('title');

 $post->body = $request->input('body');

 $post->published_at = $request->input('published_at');

 $post->save();

 }

 if($post){

 return redirect('articles');

 }

 }

 }

Chapter 6 Handling User Data and Redirects

189

You have already seen how text and text area fields work in forms. For a password

field, you can use this:

//code 6.28

{!! Form::password('password') !!}

In the same way, you can generate other inputs in this way:

{!! Form::email($name, $value = null, $attributes = array()) !!}

{!! Form::file($name, $attributes = array()) !!}

For checkboxes and radio buttons, you can use this:

{!! Form::checkbox('name', 'value') !!}

{!! Form::radio('name', 'value') !!}

You can generate a checkbox or radio input that is checked as follows:

{!! Form::checkbox('name', 'value', true) !!}

{!! Form::radio('name', 'value', true) !!}

For drop-down lists, you generally generate them in this way:

{!! Form::select('size', array('L' => 'Large', 'S' => 'Small')) !!}

You can generate a drop-down list with a selected default as follows:

{!! Form::select('size', array('L' => 'Large', 'S' => 'Small'), 'S') !!}

For generating a submit button, the process is quite simple, as shown here:

echo Form::submit('Click Me!');

For full lists, please view https://laravelcollective.com/. You can get the

updated form inputs there.

�The Traditional Way of Form Inputs
It is not mandatory that you have to use the Laravel HTML packages. You can follow the

traditional form input methodology, and you will get the same result.

In this section, you will see two instances of the traditional approach. In the first one,

you will see how you can use the form inputs to create content.

Chapter 6 Handling User Data and Redirects

https://laravelcollective.com/

190

I have used the select options to choose from different categories here. See Figure 6-5.

Figure 6-5.  Displaying the form to create contents

Figure 6-5 shows that you will be adding title, body, and tag elements for your

articles. You will also upload an image and select a category from various categories.

The code looks like this in your new article.create Blade page:

//code 6.29

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="card-header">Recent Tasks</div>

 <div class="row justify-content-left">

 <div class="col-md-4">

 <div class="card">

 <div class="card-body">

 Categories

 <p></p>

 Articles

Chapter 6 Handling User Data and Redirects

191

 <p></p>

 Add Users

 <p></p>

 </div>

 </div>

 </div>

 <div class="col-md-8">

 <div class="card">

 <div class="card-body">

 �<form enctype="multipart/form-data" method="post"

action="{{ route('article.store') }}">

 {{ csrf_field() }}

 <div class="form-group">

 <label for="post-name">Title

 *

 </label>

<input placeholder="Enter title" id="post-title" required name="title"

spellcheck="false" class="form-control"/>

 </div>

 @if($categories == null)

<input class="form-control" type="hidden" required name="category_id"

value="{{ $category_id }}"/>

 </div>

 @endif

 @if($categories != null)

 <div class="form-group">

 �<label for="category-

content">Select Category</label>

 *

 �<select name="category_id"

class="form-control" >

 �@foreach($categories as

$category)

 �<option value=

"{{$category->id}}">

Chapter 6 Handling User Data and Redirects

192

 {{$category->name}}

 </option>

 @endforeach

 </select>

 </div>

 @endif

 <div class="form-group">

 �<label for="project-

content">News Content</label>

 *

 �<textarea placeholder="Enter

body"

 �style="resize:

vertical"

 id="post-body"

 required

 name="body"

 �rows="10"

spellcheck="false"

 �class="form-control

autosize-target text-

left">

 </textarea>

 </div>

 @if($writers == null)

 �<input class="form-control"

type="hidden" required

name="writer_id"

 value="{{ $writer_id }}"/>

 </div>

 @endif

 @if($writers != null)

 <div class="form-group">

 �<label for="category-

content">Select Writer</

label>

Chapter 6 Handling User Data and Redirects

193

 �*</

span>

 �<select name="writer_id"

class="form-control" >

 �@foreach($writers as

$writer)

 �<option value="{{

$writer->id }}">

 �{{ $writer->name

}}

 </option>

 @endforeach

 </select>

 </div>

 @endif

 <div class="form-group">

 <label class="form-group">

 �<input type="hidden"

name="MAX_FILE_SIZE"

value="3000000" />

 �<input name="image"

type="file">

 �<span class="custom-file-

control">Upload Image

 </label>

 </div>

 <div class="form-group">

 <label for="post-name">Tag

 *

 </label>

 �<input placeholder="Enter title" id="post-title" required

name="tag" spellcheck="false" class="form-control"/>

 </div>

 <div class="form-group">

Chapter 6 Handling User Data and Redirects

194

 �<input type="submit" class="btn btn-primary"

 value="Submit"/>

 </div>

 </form>

 </div>

 </div>

 </div>

 </div>

</div>

@endsection

This code is long, but let’s concentrate on the first line:

<form enctype="multipart/form-data" method="post" action="{{

route('article.store') }}">

 {{ csrf_field() }}

You can select any category, as shown in Figure 6-6.

Figure 6-6.  Selecting categories while creating contents

Chapter 6 Handling User Data and Redirects

195

The action is article.store. This means in the ArticleController.php file you

need to have some extra logic like the following; this will add a tag and category and

allow you to upload an image; the title and body were there:

//code 6.30

 /**

 * Show the form for creating a new resource.

 *

 * @return \Illuminate\Http\Response

 */

 public function create()

 {

 if(Auth::user()->id == 1){

 �$categories = Category::where('user_id', Auth::user()->id)->

get();

 $writers = Writer::where('user_id', Auth::user()->id)->get();

 �return view('article.create', compact('categories',

'writers'));

 }

 return view('auth.login');

 }

 /**

 * Store a newly created resource in storage.

 *

 * @param \Illuminate\Http\Request $request

 * @return \Illuminate\Http\Response

 */

 public function store(Request $request){

 if(Auth::user()->id == 1){

 if($file = $request->file('image')){

 $name = $file->getClientOriginalName();

 //using the Article model to create posts

 $post = Article::create([

 'title' => $request->input('title'),

 'body' => $request->input('body'),

Chapter 6 Handling User Data and Redirects

196

 'user_id' => Auth::user()->id,

 'category_id' => $request->input('category_id'),

 'writer_id' => $request->input('writer_id'),

 'tag' => $request->input('tag'),

 'image' => $name

]);

 $file->move('images/articles', $name);

 }

 if($post){

 return redirect()->route('article.show', ['post'=> $post->id])

 ->with('success', 'article created successfully');

 }

 }

 �return back()->withInput()->with('errors', 'Error creating new

article');

}

The edit part is different in the article.edit Blade page. Here is the full code:

//code 6.31

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="card-header">Recent Tasks</div>

 <div class="row justify-content-left">

 <div class="col-md-4">

 <div class="card">

 <div class="card-body">

 Categories

 <p></p>

 Articles

 <p></p>

 Add Users

 <p></p>

Chapter 6 Handling User Data and Redirects

197

 </div>

 </div>

 </div>

 <div class="col-md-8">

 <div class="card">

 <div class="card-body">

 <form enctype="multipart/form-data" method="post"

 action="{{ route('article.update', [$article->id]) }}">

 {{ csrf_field() }}

 <input type="hidden" name="_method" value="put">

 <div class="form-group">

 <label for="post-name">Title

 *

 </label>

<input placeholder="Enter title" id="post-title" value="{{ $article-

>title }}"

required name="title" spellcheck="false" class="form-control"/>

 </div>

 @if($categories == null)

<input class="form-control" type="hidden" required name="category_id"

value="{{ $category_id }}"/>

 </div>

 @endif

 @if($categories != null)

 <div class="form-group">

 �<label for="category-

content">Select Category</label>

 *

 �<select name="category_id"

class="form-control" >

 �@foreach($categories as $category)

 �<option

value="{{$category->id}}">

Chapter 6 Handling User Data and Redirects

198

 {{$category->name}}

 </option>

 @endforeach

 </select>

 </div>

 @endif

 <div class="form-group">

 �<label for="project-

content">News Content</label>

 *

 �<textarea placeholder="Enter

body"

 �style="resize:

vertical"

 id="post-body"

 required

 name="body"

 �rows="10"

spellcheck="false"

 �class="form-control

autosize-target text-

left">

 {{ $article->body }}

 </textarea>

 </div>

 @if($writers == null)

 �<input class="form-control"

type="hidden" required

name="writer_id"

 value="{{ $writer_id }}"/>

 </div>

 @endif

 @if($writers != null)

 <div class="form-group">

Chapter 6 Handling User Data and Redirects

199

 �<label for="category-

content">Select Writer</

label>

 �*</

span>

 �<select name="writer_id"

class="form-control" >

 �@foreach($writers as

$writer)

 �<option value="{{

$writer->id }}">

 �{{ $writer->name

}}

 </option>

 @endforeach

 </select>

 </div>

 @endif

 <div class="form-group">

 <label class="form-group">

 �<input type="hidden"

name="MAX_FILE_SIZE"

value="3000000" />

 �<input name="image"

type="file">

 �<span class="custom-file-

control">Upload Image

 </label>

 </div>

 <div class="form-group">

 <label for="post-name">Tag

 *

 </label>

Chapter 6 Handling User Data and Redirects

200

 �<input placeholder="Enter Tags" id="article-title" value="{{

$article->tag }}"

 required name="tag" spellcheck="false" class="form-control"/>

 </div>

 <div class="form-group">

 �<input type="submit" class="btn btn-primary"

 value="Submit"/>

 </div>

 </form>

 </div>

 </div>

 </div>

 </div>

</div>

@endsection

The first four lines are important, as shown here:

//code 6.32

<form enctype="multipart/form-data" method="post"

 action="{{ route('article.update', [$article->id]) }}">

 {{ csrf_field() }}

 <input type="hidden" name="_method" value="put">

In the action part, you pass the content ID. Although the method has been

mentioned as put, you pass the hidden put method. Laravel is smart enough to

understand this and use put to edit the contents.

Since you have set the action to article.update, ArticleController contains the

following logic, as shown here:

/**

 * Show the form for editing the specified resource.

 *

 * @param int $id

 * @return \Illuminate\Http\Response

Chapter 6 Handling User Data and Redirects

201

 */

 public function edit(Article $article)

 {

 //

 $article = Article::find($article->id);

 $categories = Category::all();

 $writers = Writer::all();

 �return view('article.edit', compact('article', 'categories',

'writers'));

 }

 /**

 * Update the specified resource in storage.

 *

 * @param \Illuminate\Http\Request $request

 * @param int $id

 * @return \Illuminate\Http\Response

 */

 public function update(Request $request, Article $article)

 {

 //

 if(Auth::user()->id == 1){

 if($file = $request->file('image')){

 $name = $file->getClientOriginalName();

 $post = Article::where('id', $article->id)->update([

 'title' => $request->input('title'),

 'body' => $request->input('body'),

 'user_id' => Auth::user()->id,

 'category_id' => $request->input('category_id'),

 'writer_id' => $request->input('writer_id'),

 'tag' => $request->input('tag'),

 'image' => $name

]);

Chapter 6 Handling User Data and Redirects

202

 $file->move('images/articles', $name);

 }

 else {

 // code...

 $post = Article::where('id', $article->id)->update([

 'title' => $request->input('title'),

 'body' => $request->input('body'),

 'user_id' => Auth::user()->id,

 'category_id' => $request->input('category_id'),

 'writer_id' => $request->input('writer_id'),

 'tag' => $request->input('tag')

]);

 }

 if($post){

 $id = $article->id;

 return redirect()->route('article.show', compact('id'))

 ->with('success', 'article created successfully');

 }

 }

 }

�Form Request Validation
You have seen how you can manipulate your own validation logic in the controller.

However, for more complex scenarios, you can create a form request. These are custom

request classes, and you can place your validation logic within them.

To create a form request class, use this command in your terminal:

//code 6.33

$ php artisan make:request StoreArticle

Chapter 6 Handling User Data and Redirects

203

This class is generated and is placed in the app/Http/Requests directory. The file

comes with these lines of code:

<?php

namespace App\Http\Requests;

use Illuminate\Foundation\Http\FormRequest;

class StoreArticle extends FormRequest

{

 /**

 * Determine if the user is authorized to make this request.

 *

 * @return bool

 */

 public function authorize()

 {

 return false;

 }

 /**

 * Get the validation rules that apply to the request.

 *

 * @return array

 */

 public function rules()

 {

 return [

 //

];

 }

}

Since this is a custom class, you need to place your logic inside the rules() method.

Chapter 6 Handling User Data and Redirects

204

After adding more functionality to your validation logic, it looks like this:

//code 6.34

public function authorize()

 {

 return true;

 }

 /**

 * Get the validation rules that apply to the request.

 *

 * @return array

 */

 public function rules()

 {

 return [

 'title' => 'required|unique:users|max:255',

 'body' => 'required',

];

 }

 public function messages()

 {

 return [

 'title.required' => 'Title is required!',

 'body.required' => 'Content is required!',

];

 }

Now you can flash the custom message if the validation rules fail. Besides, you have

set the authorize() method to return true;. If the user is not authorized, this will

display a default unauthorized page, as shown in Figure 6-7.

Chapter 6 Handling User Data and Redirects

205

Figure 6-7.  When custom validation is unauthorized

This happens because Laravel wants the authorization to be valid. John cannot and

should not edit Jean’s comments. In this case, since there is just one administrator, you

can set the is_admin attribute to true for the first user (code 6.30); and if you are creating

your own content, you can make it true.

To summarize, you can conclude that form inputs are an integral part of any Laravel

application. Without forms, you cannot use CRUD or make your application dynamic.

Laravel offers you many choices, and you can choose any one of them to take your

application to the next level.

You have so far learned about creating, retrieving, updating, and deleting your news

articles in the administrative dashboard. You have also learned to upload images and

select categories and learned about validating inputs, displaying custom error outputs,

and so on. However, so far you have seen only one part of authentication. You will learn

about other methods in detail in Chapter 8 when building another role-based dynamic

application.

Chapter 6 Handling User Data and Redirects

207
© Sanjib Sinha 2019
S. Sinha, Beginning Laravel, https://doi.org/10.1007/978-1-4842-4991-8_7

CHAPTER 7

Using Tinker
Since Laravel depends heavily on command-line interfaces, you will need to know a

number of helpful commands to assist you while you build your applications.

Let’s first try to understand what a command-line interface is. Basically, it is a type of

interactive shell that takes in single-user inputs, evaluates them, and returns the result to

the user, in the form of a read-eval-print-loop (REPL) mechanism. Therefore, you can say

that Tinker is a kind of REPL.

Actually, PHP has its own interactive shell, called PsySH; Justin Hileman created it,

and Tinker is powered by PsySH.

Tinker helps you when you want to do some quick CRUD operations in the database

records of your application through the terminal. Before Laravel 5.4, it was part of the

Laravel package; now in Laravel 5.8 it extracts itself into a separate folder, although you

can use it easily in your terminal.

�Handling a Database Using Tinker
Writing PHP code through a command line is not easy. It is especially difficult when you

want to add dummy data in your database tables and you don’t have immediate access

to your database.

In such cases, Tinker is your friend.

You can even update or delete table records in the database through the Tinker.

As mentioned, Tinker is a REPL powered by the PsySH (https://github.com/

bobthecow/psysh) package. In Laravel, the use of Tinker is not limited to only database

handling. Tinker allows you to interact with your entire Laravel application on the

command line, including the Eloquent ORM, jobs, events, and more. To enter the Tinker

environment, run the artisan tinker command from the Laravel codebase, as follows:

//code 7.19

$ php artisan tinker

https://github.com/bobthecow/psysh
https://github.com/bobthecow/psysh

208

Remember, you have to be inside the Laravel application environment for this

to work. And you’ll want to be working on a database that has a connection to your

application because you’ll want to use your Eloquent models.

Once you have entered the Tinker environment, you can use any model you have.

Suppose you have a model called Listtodo; you can create a new list instance like this:

//code 7.20

$list = new Listtodo;

$list->name = 'First Job';

$list->description = 'Go to market';

$list->save();

Once you issue the save() command, the records are saved in your database tables.

You could have created the same thing with a single command, as shown here:

//code 7.21

$list = Listtodo::create(

array('name' => 'First Job',

'description' => 'Go to Market')

);

You can get the output of all lists with this command:

//code 7.22

echo Listtodo::all()->count();

You can get the first record, as shown here:

//code 7.23

$lists = Listtodo::select('name', 'description')->first();

You can get all lists ordered by name, as shown here:

//7.24

$lists = Listtodo::orderBy('name')->get();

Here is the command to get the list in descending order:

//code 7.25

$lists = Listtodo::orderBy('name', 'DESC')->get();

Chapter 7 Using Tinker

209

// order results by multiple columns

lists = Listtodo::orderBy('created_at', 'DESC')->orderBy('name', 'ASC')->

get();

You have many choices such as using conditionals, where you can check whether

your listed job is completed.

//code 7.26

$lists = Listtodo::where('isComplete', '=', 1)->get();

Suppose you want to get five records in descending order, as shown here:

//code 7.27

$lists = Listtodo::take(5)->orderBy('created_at', 'desc')->get();

You may want to skip five records, as shown here:

//code 7.28

lists = Listtodo::take(5)->skip(5)->orderBy('created_at', 'desc')->get();

For a random output of records, these commands are useful:

//code 7.29

$list = Listtodo::all()->random(1);

$list = Listtodo::orderBy(DB::raw('RAND()'))->first();

For a quick CRUD operation, Tinker is extremely useful. Suppose you want to update

a part of your existing records, as shown here:

//code 7.30

$list = Listtodo::find(1);

$list->name = 'Going to market and buying fish';

$list->save();

The effect may be achieved with this command, as shown here:

//code 7.31

$list = Listtodo::updateOrCreate(

array('name' => 'Going to market and buying fish'),

);

Chapter 7 Using Tinker

210

Deleting a record is easy. You can use either the delete() or destroy() method.

The advantage of the destroy() method is that it takes a record ID as the parameter, as

shown here:

//code 7.32

$list = Listtodo::find(2);

$list->delete();

Listtodo::destroy(2);

Using a DB facade in Tinker is often useful. In that case, you don’t use Eloquent

ORM; instead, you use a database facade directly. However, you get the same effect.

//code 7.33

$lists = DB::table('liststodos')->get();

foreach ($lists as $list) {

echo $list->name;

}

In this case, you need to identify the lists by ID. Here you want to find the ID number 6:

//code 7.34

$list = DB::table('liststodos')->find(6);

Here you get all the names in one go:

//code 7.35

$lists = DB::table('liststodos')->select('name')->get();

Traditional querying is also possible, as shown here:

//code 7.36

$lists = DB::select('SELECT * from todolists');

Inserting data into the database tables is also easy, as shown here:

//code 7.37

DB::insert('insert into todolists (name, description) values (?, ?)',

array('Second job', 'Finishing the last chapter');

With a single command, you can delete a record, as shown here:

//code 7.38

DB::delete('delete from todolists where completed = 1');

Chapter 7 Using Tinker

211

Want to drop a table entirely? Well, you don’t have to open your MySQL wizards; you

can achieve the result in your terminal, as shown here:

//code 7.39

$lists = DB::statement('drop table todolists');

Tinker is helpful when doing any database operation, not only the small and easy

ones but the complex ones too.

�SQLite Is a Breeze!
If you want to make a new company/project/task management application, which is also

a CRUD-based application, you can make this application entirely based on a SQLite

database. However, for a big and complex application, people opt for MySQL or PgSQL

because each of these can handle more visitors.

SQLite may not be big enough and basically file-based and light in nature, but it can

easily tackle small to medium applications with 100,000 visitors. So, you can feel free to

use it for any small or medium-sized CRUD applications. Especially for Laravel, SQLite is

a breeze to use because you can use Tinker to manipulate the database.

To use SQLite in Laravel, you need to change the default database setup. Two lines

need to be changed. Here’s the first one:

//Code/test/blog/config/databse.php

'default' => env('DB_CONNECTION', 'sqlite'),

In the second line, you need to mention the SQLite database file path, as shown here:

//Code/test/blog/config/databse.php

'connections' => [

 'sqlite' => [

 'driver' => 'sqlite',

 //'database' => storage_path('database.sqlite'),

 �'database' => env('DB_DATABASE', database_path('/../database/

database.sqlite')),

 'prefix' => ",

],

Chapter 7 Using Tinker

212

Suppose your local Laravel application is in the Code/test/blog directory. In that

case, you will keep your SQLite file in the Code/test/blog/database/ folder. Many

people go for the storage folder. Either one of them will work.

Second, you need to change the .env file. In the original file that comes with Laravel,

the default database is mentioned like this:

//Code/test/blog/.env

DB_CONNECTION=mysql

DB_HOST=127.0.0.1

DB_PORT=3306

DB_DATABASE=testdb

DB_USERNAME=root

DB_PASSWORD=pass

You must change it to this:

//Code/test/blog/.env

DB_CONNECTION=sqlite

DB_HOST=127.0.0.1

DB_PORT=3306

From now on, any database operation you do on your application will automatically

be registered on the SQLite database file that you create in the Code/test/blog/

database folder. Normally people don’t create a new SQLite file in the Code/test/blog/

database folder. They choose the Code/test/blog/storage/databse.sqlite file that

comes with Laravel by default. In that case, you need to change the database path Code/

test/blog/config/databse.php.

If you want to take a little break from the usual path and create a database.sqlite

file in the Code/test/blog/database folder, you must go to the desired folder first, as

shown here:

cd Code/test/blog/database

Next you have to use the touch command to create the file.

touch database.sqlite

Now you’re ready to make any type of CRUD application using SQLite.

Chapter 7 Using Tinker

213
© Sanjib Sinha 2019
S. Sinha, Beginning Laravel, https://doi.org/10.1007/978-1-4842-4991-8_8

CHAPTER 8

Authentication,
Authorization,
and Middleware
The Internet is an open gateway, and ideally data should be able to travel on it freely.

However, to be secure, this free flow of data has to be monitored and blocked sometimes.

In today’s world, the Web reaches into almost every part of our lives, so we need the

proper security in place, and your Laravel applications are no exception.

Today, most applications need to authenticate users, at least in some areas. In other

areas, your application might need to implement authorization, because authentication

by itself is not enough. That’s why most applications have layers of security and several

different roles, such as administrators, moderators, and general members.

It usually takes time to create proper authentication and authorization classes, but

not in Laravel. Implementing the functionality to authenticate users is simple. Further, it

is simple to add authorization to work seamlessly with the authentication process.

To make this all possible, you need to understand the filtering process that

Laravel adopts while it allows requests to enter the application. Laravel ships with

several prebuilt authentication controllers. You can view them in the App\Http\

Controllers\Auth namespace. There are controllers such as RegisterController,

which handles new user registration; LoginController, which handles authentication;

ForgotPasswordController, which manages e-mailing links for resetting passwords;

and ResetPasswordController, which contains the logic to reset passwords. For most

applications, you will not need to even tweak these controllers.

214

You learned earlier in the book that a single command, php artisan make:auth,

solves the authentication problem for developers. At the same time, Laravel provides

a quick way to scaffold all the routes and views you need for authentication using that

single command.

This make:auth command creates a HomeController and resources/views/

layouts directory containing a base layout for your application (although you are free to

customize the layout).

�Different Authentication Methods in the Company/
Project/Task Management Application
Before learning about the role-based methods of authentication in Laravel, let’s take a

quick look at the new application you are going to build in this chapter.

In Chapter 6, I discussed why we need a new application to learn these different

methods of role-based authentication. The previous news application was managed by

a single administrator. Here, in the company/project/task management application, you

will have different types of users who will manage different types of resources.

For example, a project manager or moderator cannot view the administrator’s

dashboard. A general user cannot penetrate the moderator’s dashboard. You can create

a workflow like this in various ways. For example, you can use middleware, you can

customize the roles through the users table, or you can authorize a user by applying

gates and policies. In this chapter, you will see each implementation separately.

Now, for brevity, I cannot show you all the code for all implementations in this

chapter, because it would add thousands of lines of code to the book. What I can do

is show the basic code snippets so that you can understand the workflow. The entire

application code is available with the download for the book; I suggest you download the

files to connect the dots as necessary.

To get started, let’s think about the companies resource first. In your application

structure, it sits at the top, and only the administrators can add projects to that resource.

Here is the routes/web.php code:

Chapter 8 Authentication, Authorization, and Middleware

215

//routes/web.php

<?php

/*

|--

| Web Routes

|--

|

| Here is where you can register web routes for your application. These

| routes are loaded by the RouteServiceProvider within a group which

| contains the "web" middleware group. Now create something great!

|

*/

//use App\Http\Middleware\CheckRole;

Route::group(['middleware' => ['web', 'auth']], function(){

 Route::get('/adminonly', function () {

 if(Auth::user()->admin == 0){

 return view('restrict');

 }else{

 $users['users'] = \App\User::all();

 return view('adminonly', $users);

 }

 });

});

Route::get('/admin', function () {

 if (Gate::allows('admin-only', Auth::user())) {

 // The current user can view this page

 return view('admin');

 }

 else{

 return view('restrict');

 }

});

Chapter 8 Authentication, Authorization, and Middleware

216

Route::get('/mod', function () {

 if (Gate::allows('mod-only', Auth::user())) {

 // The current user can view this page

 return view('mod');

 }

 else{

 return view('restrict');

 }

});

Auth::routes();

Route::resource('home', 'HomeController');

Route::resource('users', 'UserController');

Route::resource('companies', 'CompanyController');

Route::resource('companies', 'CompanyController');

Route::resource('projects', 'ProjectController');

Route::resource('roles', 'RoleController');

Route::resource('tasks', 'TaskController');

Route::resource('comments', 'CommentController');

Route::resource('articles', 'ArticleController');

Route::get('/users/{id}/articles', 'ArticleController@articles');

Route::resource('reviews', 'ReviewController');

Route::get('/users/{id}/reviews', 'ReviewController@reviews');

Route::get('companies/destroy/{id}', ['as' => 'companies.get.destroy',

 'uses' => 'CompanyController@getDestroy']);

In the routes/web.php code, you use middleware and role-based authentication;

specifically, you’ll find that code in this part:

Route::group(['middleware' => ['web', 'auth']], function(){

 Route::get('/adminonly', function () {

 if(Auth::user()->admin == 0){

 return view('restrict');

Chapter 8 Authentication, Authorization, and Middleware

217

 }else{

 $users['users'] = \App\User::all();

 return view('adminonly', $users);

 }

 });

});

You will learn how this works in a minute.

In the second part, you are using gates and policies, like this:

Route::get('/admin', function () {

 if (Gate::allows('admin-only', Auth::user())) {

 // The current user can view this page

 return view('admin');

 }

 else{

 return view('restrict');

 }

});

Route::get('/mod', function () {

 if (Gate::allows('mod-only', Auth::user())) {

 // The current user can view this page

 return view('mod');

 }

 else{

 return view('restrict');

 }

});

This separates the administrator from the moderators, giving them the freedom to

work on their own pages. I will discuss them in detail in this chapter.

Next take a look at the CompanyController.php file, as shown here:

//app/Http/Controllers/CompanyController.php

<?php

namespace App\Http\Controllers;

use App\User;

Chapter 8 Authentication, Authorization, and Middleware

218

use App\Company;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Auth;

class CompanyController extends Controller

{

 /**
 * Display a listing of the resource.

 *
 * @return \Illuminate\Http\Response

 */

 public function index()

 {

 if(Auth::check()){

 �$companies = Company::where('user_id', Auth::user()->id)->get();

 if(Auth::user()->role_id == 1){

 return view('companies.index', ['companies'=> $companies]);

 }

 }

 return view('auth.login');

 }

 /**
 * Show the form for creating a new resource.

 *
 * @return \Illuminate\Http\Response

 */

 public function create()

 {

 if(Auth::check()){

 if(Auth::user()->role_id == 1){

 return view('companies.create');

 }

 }

 return view('auth.login');

 }

Chapter 8 Authentication, Authorization, and Middleware

219

 /**
 * Store a newly created resource in storage.

 *
 * @param \Illuminate\Http\Request $request

 * @return \Illuminate\Http\Response

 */

 public function store(Request $request)

 {

 if(Auth::check()){

 $company = Company::create([

 'name' => $request->input('name'),

 'description' => $request->input('description'),

 'user_id' => Auth::user()->id

]);

 if($company){

 �return redirect()->route('companies.show', ['company'=>

$company->id])

 ->with('success' , 'Company created successfully');

 }

 }

 �return back()->withInput()->with('errors', 'Error creating new

company');

 }

 /**
 * Display the specified resource.

 *
 * @param \App\Company $company

 * @return \Illuminate\Http\Response

 */

Chapter 8 Authentication, Authorization, and Middleware

220

 public function show(Company $company)

 {

 if(Auth::check()){

 if(Auth::user()->role_id == 1){

 $company = Company::find($company->id);

 return view('companies.show', ['company' => $company]);

 }

 }

 return view('auth.login');

 }

 /**
 * Show the form for editing the specified resource.

 *
 * @param \App\Company $company

 * @return \Illuminate\Http\Response

 */

 public function edit(Company $company)

 {

 if(Auth::check()){

 if(Auth::user()->role_id == 1){

 $company = Company::find($company->id);

 return view('companies.edit', ['company' => $company]);

 }

 }

 }

 /**
 * Update the specified resource in storage.

 *
 * @param \Illuminate\Http\Request $request

 * @param \App\Company $company

 * @return \Illuminate\Http\Response

 */

Chapter 8 Authentication, Authorization, and Middleware

221

 public function update(Request $request, Company $company)

 {

 $updateCompany = Company::where('id', $company->id)->update(

 [

 'name'=> $request->input('name'),

 'description'=> $request->input('description')

]

);

 if($updateCompany){

 �return redirect()->route('companies.show', ['company'=>

$company->id])

 ->with('success' , 'Company updated successfully');

 }

 //redirect

 return back()->withInput();

 }

 /**
 * Remove the specified resource from storage.

 *
 * @param \App\Company $company

 * @return \Illuminate\Http\Response

 */

 public function destroy(Company $company)

 {

 }

 public function getDestroy($id)

 {

 $company = Company::findOrFail($id);

 if($company->destroy($id)){

 �return redirect()->route('companies.index')->with('success' ,

'Company deleted successfully');

 }

 }

}

Chapter 8 Authentication, Authorization, and Middleware

222

You learn about some of these concepts when you created the news application. For

example, you have already learned about the model relations, and the Company model

follows the same rules.

//app/Company.php

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Company extends Model

{

 /**
 * The attributes that are mass assignable.

 *
 * @var array

 */

 protected $fillable = [

 'name', 'description', 'user_id'

];

 public function user() {

 return $this->belongsTo('App\User');

 }

 public function project() {

 return $this->belongsTo('App\Project');

 }

 public function projects() {

 return $this->belongsToMany('App\Project');

 }

 public function reviews() {

 return $this->belongsToMany('App\Review');

 }

Chapter 8 Authentication, Authorization, and Middleware

223

 public function comments()

 {

 return $this->morphMany('App\Comment', 'commentable');

 }

}

In this new application, the database seeder code is a little different from the

previous news application. To give you an idea, let’s take a look at both UserFactory.php

and DatabaseSeeder.php.

First, here’s the database/factories/UserFactory.php code:

// database/factories/UserFactory.php

<?php

use Faker\Generator as Faker;

/*
|--

| Model Factories

|--

|

| This directory should contain each of the model factory definitions for

| your application. Factories provide a convenient way to generate new

| model instances for testing / seeding your application's database.

|

*/

$factory->define(App\User::class, function (Faker $faker) {

 return [

 'name' => $faker->name,

 'email' => $faker->unique()->safeEmail,

 '�password' => '$2y$10$TKh8H1.PfQx37YgCzwiKb.

KjNyWgaHb9cbcoQgdIVFlYg7B77UdFm', // secret

 'remember_token' => str_random(10),

];

});

Chapter 8 Authentication, Authorization, and Middleware

224

$factory->define(App\Company::class, function (Faker $faker) {

 return [

 'user_id' => 21,

 'name' => $faker->sentence,

 'description' => $faker->paragraph(random_int(3, 5))

];

});

$factory->define(App\Project::class, function (Faker $faker) {

 return [

 'name' => $faker->sentence,

 'description' => $faker->paragraph(random_int(3, 5)),

 'company_id' => App\Company::all()->random()->id,

 'user_id' => 21,

 �'days' => $faker->biasedNumberBetween($min = 1, $max = 20, $function

= 'sqrt')

];

});

$factory->define(App\Role::class, function (Faker $faker) {

 return [

 'name' => $faker->word

];

});

$factory->define(App\Task::class, function (Faker $faker) {

 return [

 'name' => $faker->word,

 //'user_id' => App\User::all()->random()->id,

 'user_id' => 21,

 'project_id' => App\Project::all()->random()->id,

 'company_id' => App\Company::all()->random()->id,

 �'days' => $faker->biasedNumberBetween($min = 1, $max = 20,

$function = 'sqrt')

];

});

Chapter 8 Authentication, Authorization, and Middleware

225

$factory->define(App\Profile::class, function (Faker $faker) {

 return [

 'user_id' => App\User::all()->random()->id,

 'city' => $faker->city,

 'about' => $faker->paragraph(random_int(3, 5))

];

});

$factory->define(App\Country::class, function (Faker $faker) {

 return [

 'name' => $faker->country

];

});

$factory->define(App\Comment::class, function (Faker $faker) {

 return [

 �'user_id' => $faker->biasedNumberBetween($min = 1, $max = 10,

$function = 'sqrt'),

 'body' => $faker->paragraph(random_int(3, 5)),

 'commentable_id' => $faker->randomDigit,

 'commentable_type' => function(){

 �$input = ['App\Task', 'App\Profile', 'App\Article', 'App\

Review'];

 $model = $input[mt_rand(0, count($input) - 1)];

 return $model;

 }

];

});

$factory->define(App\Article::class, function (Faker $faker) {

 return [

 'user_id' => App\User::all()->random()->id,

 'title' => $faker->sentence,

 'body' => $faker->paragraph(random_int(3, 5))

];

});

Chapter 8 Authentication, Authorization, and Middleware

226

$factory->define(App\Tag::class, function (Faker $faker) {

 return [

 'tag' => $faker->word

];

});

$factory->define(App\Review::class, function (Faker $faker) {

 return [

 'user_id' => App\User::all()->random()->id,

 'company_id' => App\Company::all()->random()->id,

 'title' => $faker->sentence,

 'body' => $faker->paragraph(random_int(3, 5))

];

});

Here is the seeder code:

//database/seeds/DatabaseSeeder.php

<?php

use Illuminate\Database\Seeder;

class DatabaseSeeder extends Seeder

{

 /**
 * Seed the application's database.

 *
 * @return void

 */

 public function run()

 {

 // $this->call(UsersTableSeeder::class);

 factory(App\User::class, 20)->create()->each(function($user){

 $user->profile()->save(factory(App\Profile::class)->make());

 });

 factory(App\Company::class, 10)->create()->each(function($company){

 $ids = range(1, 50);

Chapter 8 Authentication, Authorization, and Middleware

227

 shuffle($ids);

 $sliced = array_slice($ids, 1, 20);

 $company->projects()->attach($sliced);

 });

 factory(App\Project::class, 30)->create()->each(function($project){

 $ids = range(1, 50);

 shuffle($ids);

 $sliced = array_slice($ids, 1, 20);

 $project->users()->attach($sliced);

 });

 factory(App\Role::class, 4)->create()->each(function($role){

 $ids = range(1, 5);

 shuffle($ids);

 $sliced = array_slice($ids, 1, 20);

 $role->users()->attach($sliced);

 });

 factory(App\Task::class, 100)->create()->each(function($task){

 $ids = range(1, 50);

 shuffle($ids);

 $sliced = array_slice($ids, 1, 20);

 $task->users()->attach($sliced);

 });

 factory(App\Country::class, 30)->create();

 factory(App\Comment::class, 60)->create();

 factory(App\Article::class, 50)->create()->each(function($article){

 $ids = range(1, 50);

 shuffle($ids);

 $sliced = array_slice($ids, 1, 20);

 $article->tags()->attach($sliced);

 });

 factory(App\Tag::class, 20)->create();

Chapter 8 Authentication, Authorization, and Middleware

228

 factory(App\Review::class, 50)->create()->each(function($review){

 $ids = range(1, 50);

 shuffle($ids);

 $sliced = array_slice($ids, 1, 20);

 $review->tags()->attach($sliced);

 });

 }

Now you will proceed to learn about various authentication methods in the next

sections. What you learned while building the news application will come in handy with

this new application. In fact, if you study the code snippets I have shared in this chapter

already, you will find they have many things in common.

�How Auth Controller Works and What Auth
Middleware Is
A proper authentication and authorization process should go through the filtering

examinations first, it filters users along with other credentials. If the filtering examination

passes, only then can authenticated users enter your application. Laravel introduces

the concept of middleware in between filtering processes so that the proper filtering

takes place before anything starts. You can think of middleware as a series of layers that

HTTP requests must pass through before they actually hit your application. The more

advanced an application becomes, the more layers that can examine the requests in

different stages, and if a filtering test fails, the request is rejected entirely.

More simply, the middleware mechanism verifies whether the user is authenticated.

If the user is not authenticated, the middleware sends the user back to the login page. If

the middleware is happy with the user’s authentication, it allows the request to proceed

further into the application.

There are also other tasks that middleware has been assigned. For example, the

logging middleware might log all incoming requests to your application. Since I will

discuss the authentication and authorization processes in detail, you will look at the

middleware that is responsible for these particular tasks later in this chapter.

In this section, you are interested in the middleware that handles authentication

and CSRF protection. All of these middleware components are located in the app/Http/

Middleware directory.

Chapter 8 Authentication, Authorization, and Middleware

229

Creating middleware is easy. Open your terminal and type the following:

//code 8.1

$ php artisan make:middleware CheckRole

Middleware created successfully.

The artisan command creates your middleware, called CheckRole. To verify, let’s go

to the app/Http/Middleware directory and see whether it has been created. Yes, it has.

The code generated at the time of creation looks like this:

//code 8.2

// app/Http/Middleware/CheckRole.php

<?php

namespace App\Http\Middleware;

use Closure;

class CheckRole

{

 /**
 * Handle an incoming request.

 *
 * @param \Illuminate\Http\Request $request

 * @param \Closure $next

 * @return mixed

 */

 public function handle($request, Closure $next)

 {

 return $next($request);

 }

}

As you can see, the namespace points to the directory structure mentioned earlier.

Another interesting thing is that the method handle() passes two arguments: one is

$request, and the second one is the Closure object $next.

This means you need to define the method actions in your route where you will

request a URI (like /adminonly) and return a view using the closure (the anonymous

function).

Chapter 8 Authentication, Authorization, and Middleware

230

You need to use this middleware in a way so that only the administrator can go to the

URI /adminonly; no one else, such as moderators, editors, and other members, should

be able to access it.

To make this happen, you have to organize three files, listed here:

•	 app/Http/Middleware/CheckRole.php

•	 app/Http/Kernel.php

•	 routes/web.php

In app/Http/Middleware/CheckRole.php, you have to add some logic first so that

if in the users table the admin property is set to 0, the users will be redirected to the

“restricted” page. Otherwise, the next requests will follow one after the other. Therefore,

your app/Http/Middleware/CheckRole.php code changes to this:

//code 8.3

//'app/Http/Middleware/CheckRole.php'

 public function handle($request, Closure $next)

 {

 if(auth()->check() && $request->user()->admin == 0){

 return redirect()->guest('home');

 }

 return $next($request);

 }

}

The home page is under the auth middleware, and it has been defined in the

resourceful HomeController.php, so it actually takes the guest to the login page. So far,

you have seen how you can successfully build a news application with the help of model

relations. You have also seen different categories, articles, the relationships with the

users, and so on. However, that application was purely based on one administrator, and

you did not implement the concepts of roles there. But now you want an administrator

dashboard, where the administrator can log in and create, retrieve, and update the

records successfully.

Specifically, in the company/project/task management application, you will see how

different roles handle different segments of the application.

In this application, a company administrator will act as a super-admin, who has all

the privileges to create, retrieve, update, or delete any resource. But a project manager

Chapter 8 Authentication, Authorization, and Middleware

231

(also called a moderator or editor) cannot do that. The moderator’s role is limited to the

projects and tasks only. A general user can only write articles, add some comments, and

do things like that.

The goal is to understand the concepts so that you can implement these features in

any dynamic application in the future. You want to make sure that the moderator, editor,

and general users will also not be able to view the administrator dashboard. You can

facilitate this process in your route. Add this piece of code in your routes/web.php file:

//code 8.4

//'routes/web.php'

Route::group(['middleware' => ['web', 'auth']], function(){

 Route::get('/adminonly', function () {

 if(Auth::user()->admin == 0){

 return view('restrict');

 }else{

 $users['users'] = \App\User::all();

 return view('adminonly', $users);

 }

 });

});

As you see, you create middleware first. The code clearly mentions that if the user is

not admin, the application should take the user to the home page; otherwise, listen to the

next request.

What will be the next request? That is defined in the previous code.

First, you add a request and through the closure again add your main request and

the closure. Since in your first request you mention the middleware options, you need to

add that functionality to the app/Http/Kernel.php file. Before checking that, let’s check

your main request objects where you state that if the user’s admin property is set to 0,

the user must be redirected to the “restricted” page. Otherwise, the user is welcome

to the /adminonly URI where it returns a view Blade template page called adminonly.

blade.php in the resources/views directory. At the same time, you have sent all users’

data there along with the editing facilities.

//code 8.5

// resources/views/adminonly.blade.php

@extends('layouts.app')

Chapter 8 Authentication, Authorization, and Middleware

232

@section('content')

<div class="container">

 <div class="row">

 <div class="col-md-12 col-md-offset-2">

 <div class="panel panel-default">

 <div class="panel-heading">

 </div>

 <div class="panel-body">

 @if (session('status'))

 <div class="alert alert-success">

 {{ session('status') }}

 </div>

 @endif

<h1 class="blog-post">THIS IS ADMIN PAGE</h1>

<h1 class="blog-post">ADMIN CAN ALSO DO</h1>

<h1 class="blog-post">SOMETHING ELSE HERE</h1>

HOME

<h1 class="blog-post">PLEASE VISIT ABOVE HOME LINK FOR FURTHER EDITING</h1>

<ul class="list-group">

 @foreach ($users as $user)

 <li class="list-group-item"><h2 class="blog-post-title">

 id }}">{{ $user->name }}

 </h2>

 id }}/edit">Edit

 @endforeach

</div></div></div></div></div>

@endsection

This code basically gives you the output of all users with the editing facilities

available to the administrator. You have, at the same time, worked on the app/Http/

Kernel.php file and have an additional line here:

//code 8.6

//'app/Http/Kernel.php'

 protected $middleware = [

 \App\Http\Middleware\CheckForMaintenanceMode::class,

 \Illuminate\Foundation\Http\Middleware\ValidatePostSize::class,

Chapter 8 Authentication, Authorization, and Middleware

233

 \App\Http\Middleware\TrimStrings::class,

 �\Illuminate\Foundation\Http\Middleware\ConvertEmptyStringsToNull::

class,

 \App\Http\Middleware\TrustProxies::class,

 \App\Http\Middleware\CheckRole::class

];

See that last line? You add the CheckRole class to the global HTTP middleware stack.

The advantage of this middleware is that it runs during every request to your application.

Altogether, you have successfully tied three files together that are needed for your

middleware to work for the administrator. Figure 8-1 shows where the administrator logs in.

Figure 8-1.  Administrator dashboard through middleware

If the moderator wants to log in, the moderator is redirected to the “restricted” page,

as shown in Figure 8-2.

Chapter 8 Authentication, Authorization, and Middleware

234

Middleware has taught us one thing for certain: authentication plays a vital role

in this filtering process. Beside authentication services, Laravel provides a simple way

to authorize user actions. There are two primary ways to authorize users: gates and

policies. They act like this: you need a certain policy for a certain gate. If the policy is a

controller, you may think of the gate as your associated route.

In the next sections, you will see how to build an authorization process. You can

build the authorization process using other ways too such as the Role model; it is not

mandatory that you have to force the authorization process on an application only

through gates and policies. You will learn about them in the next sections.

Figure 8-2.  Administrator dashboard refusing to display when the user is a
moderator

Chapter 8 Authentication, Authorization, and Middleware

235

�Middleware, Authentication, and Authorization
in One Place
Let’s first see the routes/web.php code so that you can understand how you came

to these pages. You will get the full code of the company/project/task management

application in the source code section. I am going to share only the code snippets that

you need for the authentication and authorization services here.

//code 8.7

//routes/web.php

Route::get('/', function () {

 return view('welcome');

});

/*
Route::get('/test', function () {

 //

 return view('test');

})->middleware(CheckRole::class);

*/

Route::group(['middleware' => ['web', 'auth']], function(){

 Route::get('/adminonly', function () {

 if(Auth::user()->admin == 0){

 return view('restrict');

 }else{

 $users['users'] = \App\User::all();

 return view('adminonly', $users);

 }

 });

});

Route::get('/admin', function () {

 if (Gate::allows('admin-only', Auth::user())) {

 // The current user can view this page

 return view('admin');

 }

Chapter 8 Authentication, Authorization, and Middleware

236

 else{

 return view('restrict');

 }

});

Route::get('/mod', function () {

 if (Gate::allows('mod-only', Auth::user())) {

 // The current user can view this page

 return view('mod');

 }

 else{

 return view('restrict');

 }

});

Auth::routes();

Route::resource('home', 'HomeController');

Route::resource('users', 'UserController');

Route::resource('companies', 'CompanyController');

Route::resource('companies', 'CompanyController');

Route::resource('projects', 'ProjectController');

Route::resource('roles', 'RoleController');

Route::resource('tasks', 'TaskController');

Route::resource('comments', 'CommentController');

Route::resource('articles', 'ArticleController');

Route::get('/users/{id}/articles', 'ArticleController@articles');

Route::resource('reviews', 'ReviewController');

Route::get('/users/{id}/reviews', 'ReviewController@reviews');

Route::get('companies/destroy/{id}', ['as' => 'companies.get.destroy',

 'uses' => 'CompanyController@getDestroy']);

Chapter 8 Authentication, Authorization, and Middleware

237

The first few lines are important, as they tell you about the welcome page and how the

login mechanism works.

Route::get('/', function () {

 return view('welcome');

});

Auth::routes();

Route::resource('home', 'HomeController');

You will look at the home page code along with the HomeController to understand

the logic of authentication. But before that, I need to clear up a few things. First, the

welcome page is not under authentication, so anyone can view it, and the welcome page

has two sections: public and private. The private sections are meant for the members,

and the public sections are open to the guests. Figure 8-3 shows the welcome page.

Figure 8-3.  Welcome page of company management application for public
viewing

Chapter 8 Authentication, Authorization, and Middleware

238

The guests can read the blogs and reviews posted by the registered users; however,

some parts inside the blog section are covered by authentication, and the same is true

for the reviews section. Let’s click the blog link to see all the blogs first; see Figure 8-4.

Figure 8-4.  The blogs by the users along with their names and tags

Here the URI is http://localhost/articles. Now let’s click the first article and see

how it looks; see Figure 8-5.

Chapter 8 Authentication, Authorization, and Middleware

239

The URI is quite simple to follow: http://localhost/articles/1.

However, this page has many layers; for example, you can also read other articles by

the user. Since this user is from Ghana (the faker object has chosen this country for this

user), you can also view other articles written by members from the same country. You

can also view all the comments posted on this page against this article.

On the welcome page, the link to the reviews section works the same way.

On the welcome page, when you click the reviews link, it takes you to the page shown

in Figure 8-6.

Figure 8-5.  The first article

Chapter 8 Authentication, Authorization, and Middleware

240

The functioning of this reviews page is almost same as the articles page except that

the content is different. Let’s click the first review and see what you can find inside.

The main difference is any review says something about a company, so the model

relationship changes in the business layer.

A review is related to a company, and one article is related to a single user. In both

cases, this application allows you to read the articles and the reviews but never allows

you to read the information about the companies or the user. See Figure 8-7.

Figure 8-6.  The reviews page

Chapter 8 Authentication, Authorization, and Middleware

241

Here the URI is simple: http://localhost/reviews/1. This page also lists many

other things such as the company name and the link for this review, other reviews by the

same user, the country name the user belongs to, and all the reviews from that country.

�The Company App’s Model-View-Controller
Let’s go back to the article section again and try to understand the workflow between the

model, view, and controller.

Here is the code of ArticleController, the Article model, and all the view page of

the articles:

//code 8.9

//app/HTTP/Controllers/ArticleController.php

<?php

namespace App\Http\Controllers;

use App\Article;

use App\Country;

Figure 8-7.  The first review

Chapter 8 Authentication, Authorization, and Middleware

242

use App\User;

use App\Tag;

use Illuminate\Http\Request;

class ArticleController extends Controller

{

 /**
 * Display a listing of the resource.

 *
 * @return \Illuminate\Http\Response

 */

 public function index()

 {

 $articles = Article::all();

 �//$articles = Article::where('active', 1)->orderBy('title', 'desc')-

>take(10)->get();

 $users = User::all();

 $tags = Tag::all();

 return view('articles.index', compact('articles', 'users', 'tags'));

 }

 /**
 * Show the form for creating a new resource.

 *
 * @return \Illuminate\Http\Response

 */

 public function create()

 {

 //

 }

 /**
 * Store a newly created resource in storage.

 *
 * @param \Illuminate\Http\Request $request

 * @return \Illuminate\Http\Response

 */

Chapter 8 Authentication, Authorization, and Middleware

243

 public function store(Request $request)

 {

 //

 }

 /**
 * Display the specified resource.

 *
 * @param int $id

 * @return \Illuminate\Http\Response

 */

 public function show(Article $article)

 {

 $tags = Article::find($article->id)->tags;

 $article = Article::find($article->id);

 $comments = $article->comments;

 $user = User::find($article->user_id);

 $country = Country::where('id', $user->country_id)->get()->first();

 return view('articles.show', compact('tags','article',

 'country', 'comments', 'user'));

 }

 /**
 * Display the specified resource.

 *
 * @param \App\Article $article

 * @return \Illuminate\Http\Response

 */

 public function articles($id)

 {

 $user = User::find($id);

 return view('articles.articles', compact('user'));

 }

Chapter 8 Authentication, Authorization, and Middleware

244

 /**
 * Show the form for editing the specified resource.

 *
 * @param int $id

 * @return \Illuminate\Http\Response

 */

 public function edit($id)

 {

 //

 }

 /**
 * Update the specified resource in storage.

 *
 * @param \Illuminate\Http\Request $request

 * @param int $id

 * @return \Illuminate\Http\Response

 */

 public function update(Request $request, $id)

 {

 //

 }

 /**
 * Remove the specified resource from storage.

 *
 * @param int $id

 * @return \Illuminate\Http\Response

 */

 public function destroy($id)

 {

 //

 }

}

Chapter 8 Authentication, Authorization, and Middleware

245

As you can see, I have left a few methods blank, but you will use them in near future

for inserting and updating your application. Currently, you are concerned about only

three methods: index(), show(), and articles().

 //index method

public function index()

 {

 $articles = Article::all();

 $users = User::all();

 $tags = Tag::all();

 return view('articles.index', compact('articles', 'users', 'tags'));

 }

 //show method

public function show(Article $article)

 {

 $tags = Article::find($article->id)->tags;

 $article = Article::find($article->id);

 $comments = $article->comments;

 $user = User::find($article->user_id);

 $country = Country::where('id', $user->country_id)->get()->first();

 return view('articles.show', compact('tags','article',

 'country', 'comments', 'user'));

 }

//articles method

public function articles($id)

{

 $user = User::find($id);

 return view('articles.articles', compact('user'));

}

Let us take a close look at the index() method first. Think about this line:

$articles = Article::all();

Eloquent has made querying relationships quite easy. Now through the Article

model, you can retrieve all the records related to articles. As you learned earlier, Facade

provides a static interface to classes that are available in the application’s service

Chapter 8 Authentication, Authorization, and Middleware

246

container. Laravel 5.8 ships with many facades that provide access to almost all of

Laravel’s features. The DB Facade also does the same in all types of database queries. The

DB Facade provides methods for each type of query: select, update, insert, and delete.

Tip  You can also get all the records by using the table() method on DB facade
to retrieve the same records. You could have written it directly using the DB facade
instead of using the model, as sin $articles = DB::table('articles')-
>get();. Here, you have used the table method on the DB facade to begin the
query, and the table method returns a fluent query builder instance for the given
table. The advantage of using DB facade is it allows you to chain more constraints
onto the query and then finally get the results using the get method.

These three methods are related to three view pages: articles.articles, articles.

index, and articles.show. However, before taking a look at the view page code, you will

see how in the Article model you establish the relationship between different records,

as shown here:

//code 8.10

//app/Article.php

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Article extends Model

{

 protected $fillable = [

 'user_id', 'title', 'body',

];

 public function user() {

 return $this->belongsTo('App\User');

 }

 public function users() {

 return $this->belongsToMany('App\User');

 }

Chapter 8 Authentication, Authorization, and Middleware

247

 public function tags() {

 return $this->belongsToMany('App\Tag');

 }

 /**
 * Get all of the articles' comments.

 */

 public function comments(){

 return $this->morphMany('App\Comment', 'commentable');

 }

}

Each article does not have a complicated relation with the other records as one

article has three components attached to it. The first is the user who writes them, the

second is the tags the user uses, and the third one is the comments section that has a

polymorphic relation with the articles.

Here is the code for the three views of the articles; later, you will add more view pages

for inserting or updating records:

// resources/views/articles/articles.blade.php

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="row">

 �<div class="col-md-8 blog-main col-lg-8 blog-main col-sm-8 blog-main">

 <div class="blog-post">

 <ul class="list-group">

 �<div class="panel-heading">All Articles by <a href="/users/{{

$user->id }}">{{ $user->name }} </div>

 @foreach($user->articles as $article)

 <li class="list-group-item">

 <h2 class="blog-post-title">

 �id }}">{{ $article-

>title }}

 </h2>

 @endforeach

Chapter 8 Authentication, Authorization, and Middleware

248

 </div>

 <nav class="blog-pagination">

 Older

 �Newer

 </nav>

 </div>

 <aside class="col-md-4 blog-sidebar">

 <div class="p-3">

 �<h3 class="blog-post-title">Know about {{ $article->user-

>name }}

 </h3>

 <hr class="linenums" color="red">

 <div class="panel panel-default">

 �<div class="panel-heading">{{ $article->user->name }}'s

Profile</div>

 <div class="panel-body">

 �<li class="list-group-item-info">Name : {{ $article-

>user->name }}

 �<li class="list-group-item-info">Email: {{ $article-

>user->email }}

 �<li class="list-group-item-info">City: {{ $article-

>user->profile->city }}

 �<li class="list-group-item-info">About: {{ $article-

>user->profile->about }}

 </div>

 </div>

 </div>

 </aside>

 </div>

</div>

@endsection

Chapter 8 Authentication, Authorization, and Middleware

249

Here is the code for the index page of articles:

// resources/views/articles/index.blade.php

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="row">

 �<div class="col-md-6 blog-main col-lg-6 blog-main col-sm-6 blog-

main">

 <div class="blog-post">

 <ul class="list-group">

 @foreach($articles as $article)

 <li class="list-group-item"><h2 class="blog-post-title">

 �<li class="list-group-item"><a href="/articles/{{

$article->id }}">{{ $article->title }}

 </h2>

 @endforeach

 </div>

 <nav class="blog-pagination">

 Older

 Newer

 </nav>

 </div>

 <aside class="col-md-3 blog-sidebar">

 <div class="p-3">

 <h4 class="font-italic">All Writers</h4>

 @foreach($users as $user)

 id }}">{{ $user->name }}...

 @endforeach

 </div>

 </aside>

 <aside class="col-md-3 blog-sidebar">

 <div class="p-3">

 <h4 class="font-italic">Tags-Cloud</h4>

Chapter 8 Authentication, Authorization, and Middleware

250

 @foreach($tags as $tag)

 id }}">{{ $tag->tag }}...

 @endforeach

 </div>

 </aside>

 </div>

</div>

@endsection

Finally, here is the show.blade.php code; it is important because it will show a

particular article:

// resources/views/articles/show.blade.php

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="row">

 <div class="col-md-8 col-md-offset-2">

 <div class="panel panel-default">

 <div class="panel-heading">

 �<h3 class="pb-3 mb-4 font-italic border-bottom">{{

$article->title }}</h3> by

 <p>{{ $article->user->name }}</p>

 </div>

 <div class="panel-body">

 <li class="list-group-item">{{ $article->body }}

 Tags:

 @foreach($article->tags as $tag)

 {{ $tag->tag }} ,

 @endforeach

 <li class="list-group-item-info">Other Articles by

 <p>

 �user_id }}/

articles">{{ $article->user->name }}

 </p>

Chapter 8 Authentication, Authorization, and Middleware

251

 THis user belongs to {{ $country->name }}<p></p>

 <h3 class="blog-post">

 All articles from {{ $country->name }}

 </h3>

 @foreach($country->articles as $article)

 <li class="list-group-item">

 id }}">

 {{ $article->title }}

 @endforeach

 <h3 class="blog-post">

 All comments

 </h3>

 @foreach($comments as $comment)

 <li class="list-group-item">

 id }}">

 {{ $comment->body }}

 @endforeach

 </div>

 </div>

 </div>

 </div>

</div>

@endsection

In this show.blade.php page, you will find many Eloquent relationship queries

where you don’t have to add additional constraints; instead, you access the relationship

as if it consisted of properties.

Chapter 8 Authentication, Authorization, and Middleware

252

For example, in the ArticleController show($id) method, you can access them as

properties as follows:

$tags = Article::find($article->id)->tags;

 $article = Article::find($article->id);

 $comments = $article->comments;

 $user = User::find($article->user_id);

 $country = Country::where('id', $user->country_id)->get()->first();

You access all of an article’s tags like this:

$tags = Article::find($article→id)→tags;

This was originally defined in the Article and Tag models.

Since you have defined the relationship between Articles and Tags and you have

accessed article tags using Eloquent queries, now you can get the related tags in your

show.blade.php page like this:

<li class="list-group-item">{{ $article->body }}

 Tags:

 @foreach($article->tags as $tag)

 {{ $tag->tag }} ,

 @endforeach

Once you get the idea of how the Eloquent queries work and how model relations

work, the rest is simple, and any type of complicated tasks can easily be handled.

Likewise, you can now build the Reviews part the same way. For brevity, I have

not included all the code like with Articles. Here I am showing only the code of the

show($id) method of ReviewController, and I show the code for show.blade.php:

//code 8.11

//app/HTTP/Controllers/ ReviewController.php

 public function show(Review $review)

 {

 $tags = Review::find($review->id)->tags;

 $review = Review::find($review->id);

 $comments = $review->comments;

 $user = User::find($review->user_id);

 $company = Company::find($review->company_id);

Chapter 8 Authentication, Authorization, and Middleware

253

 $country = Country::where('id', $user->country_id)->get()->first();

 return view('reviews.show', compact('tags','review',

 'country', 'comments', 'user', 'company'));

 }

And you get the values in the resources/views/reviews/show.blade.php page, like

this:

//resources/views/reviews/show.blade.php

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="row">

 <div class="col-md-8 col-md-offset-2">

 <div class="panel panel-default">

 <div class="panel-heading">

 �<h3 class="pb-3 mb-4 font-italic border-bottom">{{

$review->title }}</h3> by

 <p>{{ $review->user->name }}</p>

 </div>

 <div class="panel-body">

 <li class="list-group-item">{{ $review->body }}

 Tags:

 @foreach($review->tags as $tag)

 {{ $tag->tag }} ,

 @endforeach

 <li class="list-inline">

 <h3>This review is about

 the company</h3>

 <p>

 company_id }}">

 {{ $company->name }}

 </p>

 <p>

 </p>

Chapter 8 Authentication, Authorization, and Middleware

254

 <p>

 <cite>

 However, only registered users can view

 the company profile

 </cite>

 </p>

 <p>

 </p>

 <li class="list-group-item-info">Other Reviews by

 <p>

 user_id }}/review">

 {{ $review->user->name }}

 </p>

 THis user belongs to {{ $country->name }}<p></p>

 <h3 class="blog-post">

 All reviews from {{ $country->name }}

 </h3>

 @foreach($country->reviews as $review)

 <li class="list-group-item">

 id }}">

 {{ $review->title }}

 @endforeach

 <h3 class="blog-post">

 All comments

 </h3>

 @foreach($comments as $comment)

 <li class="list-group-item">

 id }}">

 {{ $comment->body }}

Chapter 8 Authentication, Authorization, and Middleware

255

 @endforeach

 </div>

 </div>

 </div>

 </div>

</div>

@endsection

These are basically the public sections of your application for anyone to view. I have

not covered the inserting and editing parts here. As you progress, you will learn about

those parts, but before that, you will see how you can create the companies, projects, and

users section, allowing the designated users to insert or edit data.

�Home Page, Redirection, and Authentication
Implementing authentication in Laravel is super simple. You have already learned it:

you just run the php artisan make:auth and php artisan migrate commands one

after other. These two commands will take care of scaffolding the entire authentication

system. Since the authentication process has been configured by default, you need not

worry about the registration and login processes that follow it immediately.

Can you tweak the behavior of the authentication service? Yes, you can. The

authentication configuration file is config/auth.php. However, in most cases, you don’t

have to customize it. The retrieval of users is done with the help of default providers, and

Laravel ships with support for retrieving users using Eloquent and the database query

builder.

If this sounds confusing, don’t worry. I will again discuss it in a minute.

Let’s try to understand the authentication process, step-by-step, first. Laravel comes

with two types of authentication drivers: the Eloquent authentication driver and the

database authentication driver. If you don’t use the Eloquent authentication driver, you

need to use the database authentication driver. By default, Laravel includes a User model

in the app directory so that you can get an idea of how to use it with either Eloquent or a

database.

Chapter 8 Authentication, Authorization, and Middleware

256

If the default database schema works for you, you don’t have to change it or add

more functionalities in your users table. The default database schema looks like this:

 public function up()

 {

 Schema::create('users', function (Blueprint $table) {

 $table->increments('id');

 $table->string('name');

 $table->string('email')->unique();

 $table->string('password');

 $table->rememberToken();

 $table->timestamps();

 });

 }

Now, for your company/project/task management application, I have changed it to

this:

 Schema::create('users', function (Blueprint $table) {

 $table->increments('id');

 $table->integer('country_id')->nullable();

 $table->integer('role_id')->nullable();

 $table->string('name');

 $table->string('email')->unique();

 $table->timestamp('email_verified_at')->nullable();

 $table->string('password');

 $table->rememberToken();

 $table->timestamps();

 });

 }

Let’s view the code of HomeController, as shown here:

//code 8.12

//app/HTTP/Controllers/HomeController.php

<?php

namespace App\Http\Controllers;

Chapter 8 Authentication, Authorization, and Middleware

257

use Illuminate\Http\Request;

class HomeController extends Controller

{

 /**
 * Create a new controller instance.

 *
 * @return void

 */

 public function __construct()

 {

 $this->middleware('auth');

 }

 /**
 * Show the application dashboard.

 *
 * @return \Illuminate\Http\Response

 */

 public function index()

 {

 return view('home');

 }

}

The first part of the code is extremely important.

public function __construct()

 {

 $this->middleware('auth');

 }

This means once you create a HomeController instance, the instance invokes a

method called middleware() and passes an argument called auth. Therefore, whatever

method follows this constructor method will come under the umbrella of middleware

and authentication.

Chapter 8 Authentication, Authorization, and Middleware

258

First, the middleware filters the requests, and then authentication starts its workflow,

making the application authenticated.

Now, if a guest types the http://localhost/home URI in a browser, they will be

redirected to the login page. At the same time, all the login-related views are placed in

the resources/views/auth directory. The resources/views/layouts directory is also

created at the same time. Although all of these views use the Bootstrap CSS framework,

you can tweak them according to your needs.

By default, once a user is authenticated, they are redirected to the /home

URI. However, you can change this by redefining the redirectTo property in the

controllers LoginController, RegisterController, and ResetPasswordController.

For brevity, I am showing only the LoginController code here. But you need to

change the same thing in the two others. Since these three controller classes come under

the Auth namespace, the redirectTo method applies to each one individually.

//app/HTTP/Controllers/Auth/LoginController.php

<?php

namespace App\Http\Controllers\Auth;

use App\Http\Controllers\Controller;

use Illuminate\Foundation\Auth\AuthenticatesUsers;

class LoginController extends Controller

{

 /*
 |--

 | Login Controller

 |--

 |

 | This controller handles authenticating users for the application and

 | redirecting them to your home screen. The controller uses a trait

 | to conveniently provide its functionality to your applications.

 |

 */

Chapter 8 Authentication, Authorization, and Middleware

259

 use AuthenticatesUsers;

 /**
 * Where to redirect users after login.

 *
 * @var string

 */

 //protected $redirectTo = '/home';

//You can comment out the original one and in the next line change it to

something else

 /**
 * The new redirection of users after login.

 *
 * @var string

 */

 protected $redirectTo = '/';

 /**
 * Create a new controller instance.

 *
 * @return void

 */

 public function __construct()

 {

 $this->middleware('guest')->except('logout');

 }

}

Next, you need to modify the handle method in the RedirectIfAuthenticated file in

app/HTTP/Middleware/RedirectIfAuthenticated.php to use your new URI (which is /

here) while you redirect the user.

//code 8.13

<?php

namespace App\Http\Middleware;

use Closure;

use Illuminate\Support\Facades\Auth;

Chapter 8 Authentication, Authorization, and Middleware

260

class RedirectIfAuthenticated

{

 /**
 * Handle an incoming request.

 *
 * @param \Illuminate\Http\Request $request

 * @param \Closure $next

 * @param string|null $guard

 * @return mixed

 */

 public function handle($request, Closure $next, $guard = null)

 {

 if (Auth::guard($guard)->check()) {

 //return redirect('/home');

// we have commented out the default redirection and change it to the new one

 return redirect('/');

 }

 return $next($request);

 }

}

In this case, the redirectTo method will override the redirectTo attribute that you

changed in the LoginController.php code. Before, it was redirected to the /home URI;

now it goes to the document root, /. Both redirect to the same URI (here, /).

Before concluding this section, let’s see the code of resources/views/home.blade.

php. Laravel creates it by default.

//code 8.14

//resources/views/home.blade.php

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="row justify-content-center">

 <div class="col-md-8">

 <div class="card">

 <div class="card-header">Dashboard</div>

Chapter 8 Authentication, Authorization, and Middleware

261

 <div class="card-body">

 @if (session('status'))

 <div class="alert alert-success" role="alert">

 {{ session('status') }}

 </div>

 @endif

 You are logged in!

 </div>

 </div>

 </div>

 </div>

</div>

@endsection

The original code is not very long, and it displays a simple message, such as “you

are logged in.” In this application, I have designed this page in a way so that the user can

view the page according to their role.

So, there are many differences between the default home.blade.page code, shown

next, and the application’s home page:

//code 8.15

//resources/views/home.blade.php

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="row">

 <div class="col-md-12 col-md-offset-2">

 <div class="panel panel-default">

 <div class="panel-heading">

 <h2 class="blog-post"> Dashboard for Admin </h2>

 </div>

 <div class="panel-body">

 @if (session('status'))

 <div class="alert alert-success">

 {{ session('status') }}

 </div>

Chapter 8 Authentication, Authorization, and Middleware

262

 @endif

 Hello <li class="btn btn-danger">{{ $user->name }}

 You are logged in!

 </div>

 <div class="panel-body">

 <h4 class="blog-title">

 Now you can view, add, edit or delete

 any company, project, and user

 </h4>

 </div>

 </div>

 </div>

 </div>

 <div class="row">

 <aside class="col-md-4 blog-sidebar">

 <div class="p-3">

 <h3 class="pb-3 mb-4 font-italic border-bottom">

 Add New Companies

 </h3>

 �<a href="/companies/create" class="btn btn-primary"

role="button">Create Companies

 �<h4 class="font-italic">View All

Companies</h4>

 </div>

 </aside>

 <aside class="col-md-4 blog-sidebar">

 <div class="p-3">

 <h3 class="pb-3 mb-4 font-italic border-bottom">

 Add New Projects

 </h3>

 �<a href="/projects/create" class="btn btn-primary"

role="button">Create Projects

 �<h4 class="font-italic">View All Projects

</h4>

 </div>

 </aside>

Chapter 8 Authentication, Authorization, and Middleware

263

 <aside class="col-md-4 blog-sidebar">

 <div class="p-3">

 <h3 class="pb-3 mb-4 font-italic border-bottom">

 Add New Users

 </h3>

 �<a href="/users/create" class="btn btn-primary"

role="button">Create Users

 �<h4 class="font-italic">View All Users

</h4>

 </div>

 </aside>

 </div>

</div>

@endsection

You saw this page in Figure 8-1. This home page should allow a registered user to

view the dashboard panel. According to the designated role, the user can view, create,

edit, or delete data.

There are several ways to handle this task. You will learn about them in the “Role of

a User and Authorization” section. In the next section, you will learn about how you can

do authorization for a specific role.

�Role of a User and Authorization
You have defined a few specific roles, such as administrator, moderator, editor, and

member. Each role has specific tasks, such as the administrator can view/create/edit/

delete everything including companies, projects, users, reviews, and comments.

You have moderators who can view/create/edit/delete everything except companies.

Next, think about the editor. You have decided to let the editors view/create/edit/delete

everything, except companies and projects. Finally, consider the task of the general

members. They can view/create/edit/delete only reviews and comments.

Keeping every role in mind, now you can attain all these functionalities through

home.blade.php.

Chapter 8 Authentication, Authorization, and Middleware

264

Consider this part of code from the home Blade page:

//code 8.16

//resources/views/home.blade.php

<div class="panel-body">

 @if (session('status'))

 <div class="alert alert-success">

 {{ session('status') }}

 </div>

 @endif

 Hello <li class="btn btn-danger">{{ $user->name }}

 @if(Auth::user()->role_id === 1)

 <h2 class="blog-post"> Dashboard for Admin </h2>

 You are logged in as an Administrator!

 <h4 class="blog-title">

 Now you can view, add, edit or delete

 any company, project, and user

 </h4>

 <li class="nav-item dropdown">

 �<a id="navbarDropdown" class="nav-link

dropdown-toggle" href="#" role="button" data-

toggle="dropdown" aria-haspopup="true" aria-

expanded="false" v-pre>

 Companies

 �<div class="dropdown-menu dropdown-menu-right"

aria-labelledby="navbarDropdown">

 �<a href="/companies" class="btn btn-primary"

role="button">

 View All Companies

 �<a href="/companies/create" class="btn btn-

primary" role="button">

 Create Companies

 </div>

Chapter 8 Authentication, Authorization, and Middleware

265

 <li class="nav-item dropdown">

 �<a id="navbarDropdown" class="nav-link

dropdown-toggle" href="#" role="button" data-

toggle="dropdown" aria-haspopup="true" aria-

expanded="false" v-pre>

 Projects

 �<div class="dropdown-menu dropdown-menu-right"

aria-labelledby="navbarDropdown">

 �<a href="/projects" class="btn btn-primary"

role="button">

 View All Projects

 �<a href="/projects/create" class="btn btn-

primary" role="button">

 Create Projects

 </div>

 <li class="nav-item dropdown">

 �<a id="navbarDropdown" class="nav-link

dropdown-toggle" href="#" role="button" data-

toggle="dropdown" aria-haspopup="true" aria-

expanded="false" v-pre>

 Users

 �<div class="dropdown-menu dropdown-menu-right"

aria-labelledby="navbarDropdown">

 �<a href="/users" class="btn btn-primary"

role="button">

 View All Users

 </div>

//code is incomplete

It assures that the administrator can now do every operation, and once the user logs

in, according to the assigned role of an administrator, the page looks like Figure 8-1.

Chapter 8 Authentication, Authorization, and Middleware

266

Note  You can add reviews and comments here on your own. Create the models
first and then define the model relations. Next, create controllers and views
accordingly, as you’ve learned here.

If the user is a moderator, as I have pointed out before, the moderator can do every

operation except the “companies” part. When the moderator signs in, the look of the

dashboard looks like Figure 8-2.

I have limited the functionalities of the moderator or editor to projects and users; by

following the same rule, you can add reviews and comments for them.

In the home.blade.php code, this logic is important as it defines the main logic of

separations:

@if(Auth::user()->role_id === 1);

It is clear that if the user doesn’t have the role ID 1 (that is, if the user is not an

administrator), they cannot access this part. And this section of logic has been followed

by this conditional:

@elseif(Auth::user()->role_id === 2)

This states that the user must have role ID 2; that is, they need to be a moderator.

Continuing this logic, you can continue developing your application and define

and separate the activities of editors and general members by adding some extra

functionality here and there.

�Authorization Through the Blade Template
When you build a web application, forms and HTML play important roles.

The administrator should be able to create companies and edit any company. The

moderator should have the same ability to create or edit any project.

To create this functionality, you need to have necessary forms and HTML elements

in the view Blade pages. Figure 8-8 shows what it looks like when the administrator logs

in and tries to insert data.

Chapter 8 Authentication, Authorization, and Middleware

267

First, let’s see how you can add functionality to the company controller so that

you can insert, edit, or delete data into the companies’ database with the help of the

company model and view pages.

Before creating a companies page to show, edit, and delete data, you need to fill in

the companies table with some data. In the final application, the administrators would

do this. Currently, you can either use your terminal or, if you want, use the phpMyAdmin

interface. Or you can use Tinker to view or manipulate your data. In this application, I

have already used Faker and have inserted data for about 20 fake companies. As you saw

earlier, you can use Faker to add any kind of data, be it articles, users, or anything that

you need to test your application; now you can add some company data the same way.

You have to create a folder called companies inside the resources/views first. The

question is, what types of Blade pages are required? You can guess it from the company

controller. Since I have discussed how HTTP verbs, URIs, action methods, and route

names are linked together, you can guess which action methods you should use to reach

your destination view pages. The following company controller is a blank page. You need

to add functionalities here so that you can continue.

Figure 8-8.  The dashboard for administrator to insert data in companies page

Chapter 8 Authentication, Authorization, and Middleware

268

There are seven methods that your make:controller –resource command has

created. They are self-explanatory. Through the index() method, you can show the front

page of any company. You can use the show() method for any other purposes. There are

create() and store() methods for inserting new companies’ data. The edit() method

will take you to the update() method where the administrators can update any company

data. Finally, there is the delete() method to remove any data permanently.

So, inside the companies view page, you will create four pages now: index.

blade.php, show.blade.php, edit.blade.php, and create.blade.php. To start with,

let’s concentrate on index.blade.php . This page will show every company name to

everyone. You don’t want any administrator actions here. However, you want only

registered visitors to be able to click each company name and see the details on another

page. You will use the show.blade.php page for that purpose; however, you don’t want

any guest viewer to be able to view those pages. You also want the administrator to be

able to handle all operations regarding all the companies’ pages. There are four roles

you have set so far: administrator, moderator, editor, and general members or users who

are assigned tasks either by the administrator or moderator. The editor’s role should be

restricted to only editing; in other words, an editor can edit a user’s blogs and comments.

In the next section, you will take a look at all the view pages. Before that, you need to

understand how you should make resourceful controllers restrict the movement inside

the company pages. Here is the code for that:

// code 8.17

// app/HTTP/Controllers/CompanyController.php

<?php

namespace App\Http\Controllers;

use App\User;

use App\Company;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Auth;

class CompanyController extends Controller

{

 /**
 * Display a listing of the resource.

 *
 * @return \Illuminate\Http\Response

 */

Chapter 8 Authentication, Authorization, and Middleware

269

 public function index()

 {

 if(Auth::check()){

 �$companies = Company::where('user_id', Auth::user()->id)->get();

 if(Auth::user()->role_id == 1){

 return view('companies.index', ['companies'=> $companies]);

 }

 }

 return view('auth.login');

 }

 /**
 * Show the form for creating a new resource.

 *
 * @return \Illuminate\Http\Response

 */

 public function create()

 {

 if(Auth::check()){

 if(Auth::user()->role_id == 1){

 return view('companies.create');

 }

 }

 return view('auth.login');

 }

 /**
 * Store a newly created resource in storage.

 *
 * @param \Illuminate\Http\Request $request

 * @return \Illuminate\Http\Response

 */

Chapter 8 Authentication, Authorization, and Middleware

270

 public function store(Request $request)

 {

 if(Auth::check()){

 $company = Company::create([

 'name' => $request->input('name'),

 'description' => $request->input('description'),

 'user_id' => Auth::user()->id

]);

 if($company){

 �return redirect()->route('companies.show', ['company'=>

$company->id])

 ->with('success' , 'Company created successfully');

 }

 }

 �return back()->withInput()->with('errors', 'Error creating new

company');

 }

 /**
 * Display the specified resource.

 *
 * @param \App\Company $company

 * @return \Illuminate\Http\Response

 */

 public function show(Company $company)

 {

 if(Auth::check()){

 if(Auth::user()->role_id == 1){

 $company = Company::find($company->id);

 return view('companies.show', ['company' => $company]);

 }

 }

 return view('auth.login');

 }

Chapter 8 Authentication, Authorization, and Middleware

271

 /**
 * Show the form for editing the specified resource.

 *
 * @param \App\Company $company

 * @return \Illuminate\Http\Response

 */

 public function edit(Company $company)

 {

 if(Auth::check()){

 if(Auth::user()->role_id == 1){

 $company = Company::find($company->id);

 return view('companies.edit', ['company' => $company]);

 }

 }

 }

 /**
 * Update the specified resource in storage.

 *
 * @param \Illuminate\Http\Request $request

 * @param \App\Company $company

 * @return \Illuminate\Http\Response

 */

 public function update(Request $request, Company $company)

 {

 $updateCompany = Company::where('id', $company->id)->update(

 [

 'name'=> $request->input('name'),

 'description'=> $request->input('description')

]

);

 if($updateCompany){

 �return redirect()->route('companies.show', ['company'=> $company-

>id])

 ->with('success' , 'Company updated successfully');

 }

Chapter 8 Authentication, Authorization, and Middleware

272

 //redirect

 return back()->withInput();

 }

 /**
 * Remove the specified resource from storage.

 *
 * @param \App\Company $company

 * @return \Illuminate\Http\Response

 */

 public function destroy(Company $company)

 {

 }

 public function getDestroy($id)

 {

 $company = Company::findOrFail($id);

 if($company->destroy($id)){

 �return redirect()->route('companies.index')->with('success' ,

'Company deleted successfully');

 }

 }

}

Let’s take a look at the index method. It takes users to the companies.index page.

 public function index()

 {

 if(Auth::check()){

 $companies = Company::where('user_id', Auth::user()->id)->get();

 if(Auth::user()->role_id == 1){

 return view('companies.index', ['companies'=> $companies]);

 }

 }

 return view('auth.login');

 }

Chapter 8 Authentication, Authorization, and Middleware

273

The Auth class uses two static methods, check() and user(). I have used the

necessary namespace so that it can do that. At the top of this file, you will find these lines

of code:

namespace App\Http\Controllers;

use App\User;

use App\Company;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Auth;

You need two models primarily: User and Company. You will learn about the Auth

facade in the next chapter. However, primarily, you need to keep one thing in mind. The

first condition uses Auth::check();. If the viewer is not a registered user, this checking

process restricts the user’s movement. In the second condition, you check whether the

user has a role_id value of 1, which belongs only to an administrator. Regarding every

operation concerning companies, you always keep checking that these two conditions

are true. If not, the application will take the visitor to the login page.

Let’s see the companies.create Blade code now:

//code 8.18

//resources/views/companies/create.blade.php

@extends('layouts.app')

@section('content')

<div class="container">

 <div class="row">

 �<div class="col-md-8 blog-main col-lg-8 blog-main col-sm-8 blog-

main">

 <h3 class="pb-3 mb-4 font-italic border-bottom">

 All Companies

 </h3>

 <div class="blog-post">

 <h2 class="blog-post-title"></h2>

 <form method="post" action="{{ route('companies.store') }}">

 {{ csrf_field() }}

Chapter 8 Authentication, Authorization, and Middleware

274

 <div class="form-group">

 �<label for="company-name">Name*

</label>

 <input placeholder="Enter name"

 id="company-name"

 required

 name="name"

 spellcheck="false"

 class="form-control"

 />

 </div>

 <div class="form-group">

 <label for="company-content">Description</label>

 <textarea placeholder="Enter description"

 style="resize: vertical"

 id="company-content"

 name="description"

 rows="10" spellcheck="false"

 class="form-control autosize-target text-left">

 </textarea>

 </div>

 <div class="form-group">

 <input type="submit" class="btn btn-primary"

 value="Submit"/>

 </div>

 </form>

 </div>

 </div>

 </div>

</div>

@endsection

Opening and closing a form in any Laravel’s application is quite easy.

{{ Form::open(array('url' => 'companies/create')) }}

 //

{{ Form::close() }}

Chapter 8 Authentication, Authorization, and Middleware

275

A POST method will be assumed by default; however, you are always free to add

other functionalities like PUT or PATCH.

echo Form::open(array('url' => 'companies/create', 'method' => 'put'))

Here I have followed the conventional method:

<form method="post" action="{{ route('companies.store') }}">

 {{ csrf_field() }}

You are always free to choose your own method. However, in the previous

line, the route() method is important because it points to the store() method of

CompanyController.php file, as shown here:

 //app/HTTP/Controllers/CompanyController.php

public function store(Request $request)

 {

 if(Auth::check()){

 $company = Company::create([

 'name' => $request->input('name'),

 'description' => $request->input('description'),

 'user_id' => Auth::user()->id

]);

 if($company){

 �return redirect()->route('companies.show', ['company'=>

$company->id])

 ->with('success' , 'Company created successfully');

 }

 }

 �return back()->withInput()->with('errors', 'Error creating new

company');

 }

This completes the whole insertion process. The editing part is almost the same,

except a few changes. Let’s see what the edit.blade.php page code looks like:

// resources/views/companies/edit.blade.php

@extends('layouts.app')

@section('content')

Chapter 8 Authentication, Authorization, and Middleware

276

<div class="container">

 <div class="row">

 �<div class="col-md-8 blog-main col-lg-8 blog-main col-sm-8

blog-main">

 <h3 class="pb-3 mb-4 font-italic border-bottom">

 Edit Companies

 </h3>

 <div class="blog-post">

 <ul class="list-group">

 �<form method="post" action="{{ route('companies.update',

[$company->id]) }}">

 {{ csrf_field() }}

 �<input type="hidden" name="_method" value="put">

 <div class="form-group">

 �<label for="company-name">Name<span

class="required">*</label>

 <input placeholder="Enter name"

 id="company-name"

 required

 name="name"

 spellcheck="false"

 class="form-control"

 value="{{ $company->name }}"

 />

 </div>

 <div class="form-group">

 �<label for="company-content">Description

</label>

 <textarea placeholder="Enter description"

 style="resize: vertical"

 id="company-content"

 name="description"

 rows="10" spellcheck="false"

 �class="form-control autosize-

target text-left">

Chapter 8 Authentication, Authorization, and Middleware

277

 �{{ $company->description }}

</textarea>

 </div>

 <div class="form-group">

 �<input type="submit" class="btn btn-primary"

 value="Submit"/>

 </div>

</form>

 </div>

 </div>

 </div>

</div>

@endsection

Here the following line is extremely important:

<form method="post" action="{{ route('companies.update',[$company->id])

}}"> {{ csrf_field() }}

The route() method passes the update() method of CompanyController.php, and

that code looks like this:

 //app/HTTP/Controllers/CompanyController.php

public function update(Request $request, Company $company)

 {

 $updateCompany = Company::where('id', $company->id)->update(

 [

 'name'=> $request->input('name'),

 'description'=> $request->input('description')

]

);

 if($updateCompany){

 �return redirect()->route('companies.show', ['company'=>

$company->id])

 ->with('success' , 'Company updated successfully');

 }

Chapter 8 Authentication, Authorization, and Middleware

278

 //redirect

 return back()->withInput();

 }

The edit companies page looks like Figure 8-9. On this edit page, only the

administrator has the power to enter and edit anything.

Figure 8-9.  Edit companies page

Based on the same techniques, you can edit and update any data using controller,

model, and view pages.

If you want to insert or edit data, you need to make yourself authorized to do that.

You have seen how Laravel has helped you achieve your goal in a simple way, without

writing hundreds of lines of code.

Laravel has another authorization technique that you can also utilize. In the next

section, you will learn about it.

Chapter 8 Authentication, Authorization, and Middleware

279

�Implementing Authorization Using Gates
and Policies
You have seen how authentication services come out of the box, and in this section I will

discuss authentication in more detail. Laravel provides a simple way to authorize user

actions against a given resource. To authorize actions, you use gates and policies. Let’s

first see them in action, and after that you will learn how to use them. In Figure 8-1, at the

beginning of the chapter, you saw what the home page looks like after the administrator

has logged in.

In the top-right corner, you can see another Admin link. It does not show up when

other users log in. I have used a simple authorization technique to make it possible. In

the cases of moderators, editors, or general members, you can also have similar things in

place. For example, when a moderator logs in, you can display a Moderator link to take

the moderator to a destination that is reserved for their own consumption. Other users

won’t see that link.

Let’s see what happens when the administrator clicks the Admin link; see Figure 8-10.

Figure 8-10.  The dashboard for administrator after authorization takes place

Chapter 8 Authentication, Authorization, and Middleware

280

As you can see, you can use this administrator page for different tasks than just

inserting and updating companies, projects, tasks, and user data. The next pages will

show some other types of administrator pages that I created with gates and policies.

In Figure 8-10, the URI is http://localhost:8000/admin. Whenever the

administrator signs in, they are taken to this particular destination.

What happens when someone who is not an administrator tries to type the same URI

in the browser and wants to penetrate the site?

Well, Figure 8-11 shows the result.

Figure 8-11.  When someone other than administrator wants to view admin page

This means the URI has been filtered automatically, and a restriction has taken

place. Therefore, by applying simple authorization techniques, you have achieved many

things in one go. You have created a system where only the administrator can view the

Admin link and where only administrators can reach the administrator page meant for

them. Moreover, the administrator page has been filtered automatically.

Let’s see how to do this.

Chapter 8 Authentication, Authorization, and Middleware

281

�How Authorization Works
First, you need to add one column in your users table. I have added a column

called admin (tinyint) and made its default value 0 so that I can change it to 1 for the

administrator.

The SQL query that you can run is this:

ALTER TABLE `users` ADD `admin` TINYINT NOT NULL DEFAULT '0' AFTER

`updated_at`;

Now you can think of gates and policies as your routes and controllers. While

gates gives you a closure-based approach toward authorization, the policies provide a

controller like logic handling. However, I would like to add one important statement

here. It is not mandatory that you have to follow this approach for building an

authorization mechanism. You could have taken the role-based approach as well even

using the Blade template.

So, as mentioned, your first step is to add a column in your users table. You can

name it anything (I’ve named it admin), but whatever name you assign, you need to use

that name in your gates and policies.

Next, open the app/Providers/AuthServiceProvider.php file and add this line:

//code 8.19

//app/Providers/AuthServiceProvider.php

 /**
 * Register any authentication / authorization services.

 *
 * @return void

 */

 public function boot()

 {

 $this->registerPolicies();

 Gate::define('admin-only', function ($user) {

 if($user->admin == 1){

 return TRUE;

 }

Chapter 8 Authentication, Authorization, and Middleware

282

 return FALSE;

 });

 }

As I said earlier, gates work as routes; hence, the closure defines that if the user

object that accesses the admin property (remember, you have added the column admin

in users table, so the name matters) equals 1, it will return TRUE. Otherwise, it returns

FALSE.

Next, you need to fix that gates in the route file, which is routes/web.php.

//code 8.20

//routes/web.php

Route::get('/admin', function () {

 if (Gate::allows('admin-only', Auth::user())) {

 // The current user can view this page

 return view('admin');

 }

 else{

 return view('restrict');

 }

});

Here you should keep one thing in mind. I have added the admin column in

the users table, so the gates will allow admins only. If you had named the column

something else, such as isadmin, then your gates would have allowed “isadmin” only.

That is the rule.

Now, the user who has their admin column set to 1 can view the http://localhost/

admin URI. Anybody else will land at the http://localhost/restrict page. Through

the gates closures, you can easily determine whether a user is authorized to perform

a given action. Here, in this company/project/task management application, since

the user sanjib is the administrator, his role has been defined in the App\Providers\

AuthServiceProvider class using the Gates facade. As gates always receive a user

instance as their first argument, it is easy to determine whether $user->admin == 1.

Chapter 8 Authentication, Authorization, and Middleware

283

Once the gates have been defined, you can use the allows or denies method. Laravel

will automatically take care of passing the user into the gate closures. If you want to

update a post, you can write it like this:

 if (Gate::allows('update-post', $post)) {

 // The current user can update the post...

 }

/* or you can deny any user from doing it */

 if (Gate::denies('update-post', $post)) {

 // The current user can't update the post...

 }

Now you’re left with another task. How you can determine the role of the user in your

Blade template? How you can use this Gates facade so that the administrator alone can

view the admin link?

Since the right side of the “navigation bar” has been defined in the resource/views/

layouts/app.blade.php file, you can use a three-line code inside this navigation bar.

//code 8.21

// resource/views/layouts/app.blade.php

<!-- Right Side Of Navbar -->

 <ul class="navbar-nav ml-auto">

 <!-- Authentication Links -->

 @guest

 <li class="nav-item">

 �<a class="nav-link" href="{{ route('login')

}}">{{ __('Login') }}

 <li class="nav-item">

 @if (Route::has('register'))

 �<a class="nav-link" href="{{

route('register') }}">{{ __('Register')

}}

 @endif

Chapter 8 Authentication, Authorization, and Middleware

284

 @else

 <li class="nav-item dropdown">

 @can('admin-only', Auth::user())

 �<a id="navbarDropdown" class="nav-link

dropdown-toggle" href="/admin">Admin

 @endcan

 <li class="nav-item dropdown">

 �<a id="navbarDropdown" class="nav-link

dropdown-toggle"

 �href="#" role="button" data-

toggle="dropdown" aria-haspopup="true"

aria-expanded="false" v-pre>

 �{{ Auth::user()->name }} <span

class="caret">

 �<div class="dropdown-menu dropdown-menu-

right" aria-labelledby="navbarDropdown">

 �<a class="dropdown-item" href="{{

route('logout') }}"

 �onclick="event.preventDefault();

 �document.getElement

ById('logout-form').

submit();">

 {{ __('Logout') }}

 �<form id="logout-form" action="{{

route('logout') }}" method="POST"

style="display: none;">

 @csrf

 </form>

 </div>

 @endguest

Chapter 8 Authentication, Authorization, and Middleware

285

This code determines what a guest would view in the upper-right navigation and

what the registered administrator could view. This simple logic has been handled by this

line:

<li class="nav-item dropdown">

 @can('admin-only', Auth::user())

 �<a id="navbarDropdown" class="nav-link

dropdown-toggle" href="/admin">Admin

 @endcan

In the Blade templates, you are displaying a portion of the page only if the user is

authorized to perform a given action. If you want the users to update the post, you can

use the @can and @cannot family of directives, as you can see in the previous code.

�How Policies Work
You have so far been able to make the administrator view the restricted pages designated

for administrators only. Now you will learn to enhance this capacity. An administrator

will view the designated page for the moderator as well. Not only that, you will see how

to add the same facility for the moderator so that the moderator can view the link of the

restricted page for the moderators.

You can apply the same technique as you have adopted for the administrator.

So, in the //app/Providers/AuthServiceProvider.php file, you can add the same

functionalities, as shown here:

 /**
 * Register any authentication / authorization services.

 *
 * @return void

 */

 public function boot()

 {

 $this->registerPolicies();

 Gate::define('admin-only', function ($user) {

 if($user->admin == 1){

Chapter 8 Authentication, Authorization, and Middleware

286

 return TRUE;

 }

 return FALSE;

 });

 Gate::define('mod-only', function ($user) {

 if($user->mod == 1){

 return TRUE;

 }

 return FALSE;

 });

 }

In your routes/web.php file, you should define the closure this way:

Route::get('/mod', function () {

 if (Gate::allows('mod-only', Auth::user())) {

 // The current user can view this page

 return view('mod');

 }

 else{

 return view('restrict');

 }

});

As expected, now this mechanism works fine for your application. The administrator

(here sanjib) now can view the Admin link and the Moderator link in the top-right

navigation bar.

This action was caused by a little change of code in the source layout page,

resources/views/layouts/app.blade.php, as shown here:

<li class="nav-item dropdown">

 @can('admin-only', Auth::user())

 �<a id="navbarDropdown" class="nav-link

dropdown-toggle" href="/admin">Admin

 @endcan

Chapter 8 Authentication, Authorization, and Middleware

287

 <li class="nav-item dropdown">

 @can('mod-only', Auth::user())

 �<a id="navbarDropdown" class="nav-link

dropdown-toggle" href="/mod">Moderator

 @endcan

I have also added a new column mod in the users table and turned it on by changing

the default value from 0 to 1.

Now if a moderator signs in, they can also view the moderator link in the top-right

navigation bar (Figure 8-2).

The specialty of this page is that the moderator cannot view the Admin link, of

course. At the same time, the administrator can view everything and access everything.

Now as far as your application logic works, everything goes perfectly. However, you

could have made the same functionalities much tidier using policies. So far you have

added more functionalities in our //app/Providers/AuthServiceProvider.php file and

it works. However, this is not wise to have crowded all the application logic in your //

app/Providers/AuthServiceProvider.php file, making it unnecessary long and clumsy.

Laravel comes with policies that might define the gates in advance so that you can

just register your policies in your gates and get the same result.

�Why Are Policies Needed?
To answer this question, you need some classes where you can organize your

authorization logic around a particular model or resource. You want to create separate

authorization logic for the administrator and the moderator. Both belong to the user

model. In your route, you are not going to use any resource for them because you want to

keep them separate through closure.

So for the administrator, you have admin policies, and for the moderator you need

mod policies. Creating the policies is simple.

$ php artisan make:policy admin

Policy created successfully.

$ php artisan make:policy mod

Policy created successfully.

Chapter 8 Authentication, Authorization, and Middleware

288

Now you have two files created automatically, App/Policies/admin.php and App/

Policies/mod.php, by the artisan commands. You could have associated the policies

with a model also.

php artisan make:policy admin --model=User

In both cases, the generated policies will be placed in the app/Policies directory. If

this directory does not exist in your application, Laravel will create it.

The generated policy class would be an empty class if you hadn’t used the model

associated with it. If you had specified the particular --model, the basic CRUD policy

methods would already be included in the class.

Now in the App/Policies/admin.php class, you are going to organize the application

logic for the user who is the administrator. At the same time in the App/Policies/mod.

php, you will organize the application logic for the user who is the moderator.

Let’s look at the App/Policies/admin.php code here:

//code 8.22

//App/Policies/admin.php

<?php

namespace App\Policies;

use App\User;

use Illuminate\Auth\Access\HandlesAuthorization;

class admin

{

 use HandlesAuthorization;

 /**
 * Create a new policy instance.

 *
 * @return void

 */

 public function __construct()

 {

 //

 }

Chapter 8 Authentication, Authorization, and Middleware

289

 public function admin_only($user)

 {

 if($user->admin == 1){

 return TRUE;

 }

 return FALSE;

 }

}

You have taken the authorization logic from your gates and kept it inside the admin_

only method. You have also passed the user object so that you can use the User model

and its table attributes.

The same thing happens in the case of the mod policies, as shown here:

//code 8.23

//App/Policies/mod.php

<?php

namespace App\Policies;

use App\User;

use Illuminate\Auth\Access\HandlesAuthorization;

class mod

{

 use HandlesAuthorization;

 /**
 * Create a new policy instance.

 *
 * @return void

 */

 public function __construct()

 {

 //

 }

 public function mod_only($user)

 {

Chapter 8 Authentication, Authorization, and Middleware

290

 if($user->mod == 1){

 return TRUE;

 }

 return FALSE;

 }

}

Now the time has come to register the policies. The app/Policies/

AuthServiceProvider is included with the fresh Laravel installation. This

AuthServiceProvider maps the Eloquent models to the corresponding policies. Once

you have registered the policies in AuthServiceProvider, the application will start

instructing Laravel which policy to utilize while authorizing actions against a given

model.

In AuthServiceProvider, you will map the policies in this way:

protected $policies = [

 'App\Model' => 'App\Policies\ModelPolicy',

 'App\User' => admin::class,

 'App\User' => mod::class

];

After that, you will register the services.

 public function boot()

 {

 $this->registerPolicies();

 Gate::define('admin-only', 'App\Policies\admin@admin_only');

 Gate::define('mod-only', 'App\Policies\mod@mod_only');

 }

The full app/Policies/AuthServiceProvider.php code looks like this:

//code 8.24

//app/Policies/ AuthServiceProvider.php

<?php

Chapter 8 Authentication, Authorization, and Middleware

291

namespace App\Providers;

use App\Policies\admin;

use App\Policies\mod;

use App\User;

use Illuminate\Support\Facades\Gate;

use Illuminate\Foundation\Support\Providers\AuthServiceProvider as

ServiceProvider;

class AuthServiceProvider extends ServiceProvider

{

 /**
 * The policy mappings for the application.

 *
 * @var array

 */

 protected $policies = [

 'App\Model' => 'App\Policies\ModelPolicy',

 'App\User' => admin::class,

 'App\User' => mod::class

];

 /**
 * Register any authentication / authorization services.

 *
 * @return void

 */

 public function boot()

 {

 $this->registerPolicies();

 Gate::define('admin-only', 'App\Policies\admin@admin_only');

 Gate::define('mod-only', 'App\Policies\mod@mod_only');

 }

}

Chapter 8 Authentication, Authorization, and Middleware

292

Once the policies have been mapped, you have registered the methods that will be

responsible for each action this ‘policy’ authorizes.

Tips L aravel provides authentication services out of the box. In fact, you
can manage the whole authorization process through the roles assigned to
the corresponding users. However, it is always wise to utilize the advantages
of Laravel’s default authorization services also by using gates and policies.
Authorizing given actions against a resource is simple and does not take much
time. 

Before using gates and policies, you need to alter your users table with a SQL
query like the following because you have used a different users table so far.
However, now you need two new columns, admin and mod for the administrator
and moderators, respectively. 

ALTER TABLE `users` ADD `admin` TINYINT NOT NULL DEFAULT '0'
AFTER `updated_at`; 

ALTER TABLE `users` ADD `mod` TINYINT NOT NULL DEFAULT '0'
AFTER `admin`; 

This means you can set the default 0 value to 1 for the desired candidates.

Chapter 8 Authentication, Authorization, and Middleware

293
© Sanjib Sinha 2019
S. Sinha, Beginning Laravel, https://doi.org/10.1007/978-1-4842-4991-8_9

CHAPTER 9

Containers and Facades
Ever since Laravel 4, you have been encouraged to follow the SOLID design principle

when creating applications, and this is even more true in Laravel 5.8 so that you can

avoid hard-coding and can write cleaner code. Let’s see what the SOLID design principle

is all about.

This chapter does not have enough pages to give a detailed description of the SOLID

principle, but I will discuss it in a nutshell in the first section.

Creating any application in Laravel always needs lots of class dependencies. You

may use third-party packages, such as Carbon to manipulate the date and time, or you

may have your own class repositories to be injected into the application; whatever the

reasons are, you will want a tool to manage these operations seamlessly. The Laravel

service container is a powerful tool that manages such class dependencies and performs

dependency injection, and the SOLID design principle is a kind of theoretical axiom

on which the Laravel service container and facade concepts rely heavily. Facades are

connected to the service containers because facades provide static interfaces to the

classes that are available in the service containers.

�SOLID Design Principle
SOLID actually consists of five design principles as articulated by Robert “Uncle Bob”

Martin.

SOLID stands for

•	 Single responsibility principle

•	 Open-closed principle

•	 Liskov substitution principle

•	 Interface segregation principle

•	 Dependency inversion principle

294

�Single Responsibility Principle
The single responsibility principle means a class should have one, and only one, reason

to change.

In other words, in a Laravel application, a controller class handles only one

resource, which is connected to one corresponding model. As you may have noticed in

the applications in this book, you have maintained this single responsibility principle

without even trying.

Limiting class knowledge is important. The class’s scope should be narrowly focused.

A class would do its job and not at all be affected by any changes that take place in its

dependencies.

Remember, if you can build a library of small classes with well-defined

responsibilities, your code will be more decoupled and easier to test and run.

�The Open-Closed Principle
The open-closed principle means a class is always open for extension but closed for

modification.

Why is that?

Only you can make some changes in behavior. Unless it is a behavior change, you

should not modify your source code. If you can do your job without touching the source

code, then you are following the open-closed principle. You should separate extensible

behavior behind an interface and flip the dependencies. In other words, while creating

an application, you should maintain the data abstraction principle, which is the main

principle of any object-oriented programming language. Using an interface between two

classes always separates those classes in such a way that one class does not know the

other class’s intention.

Any time you modify your code, there is a possibility of breaking the old functionality

or even adding new bugs. But if you can plan your application in the beginning based on

the open-closed principle, you can modify your code base as quickly as possible without

affecting it negatively. Again, if you don’t use an interface between two classes, the

extensibility of an application can be jeopardized.

Chapter 9 Containers and Facades

295

�Liskov Substitution Principle
This principle may sound intimidating, but it is extremely helpful and easy to

understand. It says that derived classes must be substitutable for their base class, which

means objects should be replaceable with instances of their subtypes without altering

the correctness of the program.

As mentioned, the principle says that objects of a superclass will be replaceable with

objects of its subclasses without breaking the application. That requires the objects of

your subclasses to behave in the same way as the objects of your superclass. This is a

guiding principle of any object-oriented programming and fundamental paradigm that

results in proper inheritance.

�The Interface Segregation Principle
The interface segregation principle is all about singular responsibilities. In a nutshell,

it says that an interface should be granular and focused. No implementation of an

interface should be forced to implement methods that it does not use. Accordingly, break

functionality into small interfaces where needed for your implementation. Plan this out

before creating an application and enjoy the decoupled easygoing ride of the interface

segregation principle.

�Dependency Inversion Principle
Finally, the dependency inversion principle states that high-level code should not

depend on low-level code. Instead, the high-level code should depend on abstraction

that acts as a middleman between the high level and the low level. The second aspect

is that abstraction does not depend upon details; instead, the details depend upon

abstractions.

In a Laravel application, you may have noticed that functionalities are given to the

users, but you always hide the implementation details from the users. For example, in

a view page when you call any object properties and methods, the user does not know

where the data comes from. The business logic is hidden in the model that deals with the

abstraction. The controller class is in between the logic and the model and controls the

high-level code. The low-level code in the view pages depends on the controller, but the

inverse is not true here.

Chapter 9 Containers and Facades

296

�Interfaces and Method Injection
Abstraction in OOP involves the extraction of relevant details. Consider the role of a car

salesperson. There are many types of consumers. Everyone wants to buy a car, no doubt,

but each one has differences in their criteria. Each of them is interested in one or two

certain features. This attribute varies accordingly. Shape, color, engine power, power

steering, price...the list is endless. The salesperson knows all the details of the car but

does he repeat the list one by one until someone lands on their choice?

No.

He presents only the relevant information to each potential customer. As a result,

the salesperson practices abstraction and presents only the relevant details to each

customer. Now consider abstraction from the perspective of a programmer who wants a

user to add items to a list.

Abstraction does not mean that information is unavailable, but it assures that the

relevant information is provided to the user. For example, when a user adds items to a

shopping cart, the user handles the functionalities only and is completely unaware of

the implementations. So, only the relevant information is present or displayed in any

application for the users who use those details to complete the tasks.

PHP 5 introduced abstract classes and methods, and PHP 7 enhances them, making

the general-purpose language completely object-oriented. Classes defined as abstract

cannot be instantiated, and any class that contains at least one abstract method must

also be abstract.

Remember that abstract methods cannot define the implementation. On the other

hand, object interfaces allow you to create code that specifies which methods a class

must implement, without having to define how these methods are handled. So, you can

define an abstract cart that specifies what all carts can do, not how they do it. You then

let the different e-commerce platforms create their own custom carts that specify how to

carry out a cart’s functionality. These custom carts are interchangeable because they all

adhere to the interface defined by the abstract cart.

Interfaces are defined with the interface keyword, in the same way as a standard

class, but without any of the methods having their contents defined.

All methods declared in an interface must be public; this is the nature of an interface.

In Laravel, you will find the injection of interfaces to the classes frequently. In Laravel,

an interface is considered to be a contract. In your application you can also do that if

needed; I will show this technique in detail later in this chapter.

Chapter 9 Containers and Facades

297

But contract between whom? And why? An interface does not contain any code;

it only defines a set of methods that an object implements. With regard to the SOLID

design principle, I have talked about maintaining a library of small classes with clearly

defined scopes, which is achievable with the help of interfaces.

�Contracts vs. Facades
You know that the Laravel 5.8 framework depends on many blocks of interfaces, classes,

and other packaged versions that package developers have developed. Laravel 5.8 has

happily used them, and I encourage you to do the same by following the SOLID design

principle and using loose coupling. To master the framework properly, you need to

understand the core services that run Laravel 5.8.

What are the main resources behind the scenes? Basically, contracts come in

between the classes, regarding this scenario. Contracts are interfaces that provide this

service to make an application loosely coupled. For example, Illuminate\Contracts\

Mail\Mailer defines the process of sending e-mails, so this interface simply pools the

implementation of mailer classes powered by SwiftMailer.

Now what are facades? Do they have any similarity or relationship to anything else?

First, you should know that facades are also interfaces. But they have a distinct difference

from contracts.

Facades are static interfaces that supply methods to the classes of a service container.

You have seen a lot of facades already, such as App, Route, DB, View, and so on. The main

aspect of facades is that you can use them without type-hinting. Like in your routes.php

file, you can write this:

//code 9.1

Route::bind('books', function ($id){

return App\Book::where('id', $id)-->first();

});

This Route facade directly uses the contracts out of the service container. Though

facades are static interfaces, they have more expressive syntax and provide more

testability and flexibility than a traditional static methodology. But the advantage of

Contracts is that you can define explicit dependencies for your classes and make your

application more loosely coupled.

Chapter 9 Containers and Facades

298

Of course, for most applications, facades work fine. But in some cases if you want

to create something more, you need to use contracts. So, how do you implement a

contract?

It is extremely simple, and one example can illuminate the whole concept. Actually,

you have used it already! Suppose you have a controller called BookController through

which you want to maintain a long list of your favorite books. To do that, you need to

store books in a database. To do that, you can bind your Book model in your routes.php

file first, and then using a resource of Book Controller, you can do all kinds of

CRUD operations. In doing so, you need to log in.

Consider this code:

//code 9.2

public function store(Request $request)

{

 if (Auth::check()) {

 // The user is logged in

 }

}

You can check whether the user is logged in, and depending on that, you can

add only your favorite books. For this check, you use the Auth facade. As long as you

don’t want a more decoupled state, it works fine. But if you’d rather follow the SOLID

principle and want a more decoupled state, then instead of depending on a concrete

implementation, you would have to adopt a more robust abstract approach. And in that

case, a contract comes to your rescue.

Taylor Otwell himself keeps GitHub repositories on contracts, so you should
take a look at that. All of the Laravel contracts live at https://github.com/
illuminate/contracts.

So, you can either use your Auth facade directly in the methods or inject it through

the constructor. Understand that when you use a facade directly, it assumes the

framework is tightly coupled with a concrete implementation. But considering the

SOLID principle, you want a decoupled state. What to do? You can inject your Auth

facade through a constructor like in the following code and rewrite the code in this way:

Chapter 9 Containers and Facades

https://github.com/illuminate/contracts
https://github.com/illuminate/contracts

299

//code 9.3

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

use Illuminate\Auth\Guard as Auth;

class BooksController extends Controller

{

/**

* Display a listing of the resource

*

* @return Response

*/

protected $auth;

public function __construct(Auth $auth) {

$this-->auth = $auth;

}

public function store(Request $request)

{

$this->auth->attempt();

}

}

Now it is much better; you have injected an Auth instance through your constructor.

Yes, it is better than before, but still it lacks the SOLID design principle. It depends upon

a concrete class like the following:

//code 9.4

namespace Illuminate\Auth;

use RuntimeException;

use Illuminate\Support\Str;

use Illuminate\Contracts\Events\Dispatcher;

use Illuminate\Contracts\Auth\UserProvider;

use Symfony\Component\HttpFoundation\Request;

use Symfony\Component\HttpFoundation\Response;

use Illuminate\Contracts\Auth\Guard as GuardContract;

use Illuminate\Contracts\Cookie\QueueingFactory as CookieJar;

Chapter 9 Containers and Facades

300

use Illuminate\Contracts\Auth\Authenticatable as UserContract;

use Symfony\Component\HttpFoundation\Session\SessionInterface;

class Guard implements GuardContract {....}

//code is incomplete for brevity

As you can see, when you use this line of code in your BookController, you actually

inject an instance based on a concrete implementation and not on abstraction.

use Illuminate\Auth\Guard as Auth

When you unit test your code, you will have to rewrite it. Moreover, whenever you

call any methods through this instance, it is aware of your framework.

But you need to make it completely unaware of your framework and become loosely

coupled. So, you have to change one line of code in your BookController. Instead of

using this line of code:

use Illuminate\Auth\Guard as Auth;

you write this line of code:

use Illuminate\Contracts\Auth\Guard as Auth;

That is it! Now your Auth instance is completely loosely coupled, and you can change

this line of code in the store() method:

if (Auth::check()) {

// The user is logged in

}

to this line of code:

$this-->auth->attempt();

Your application is now more sophisticated because it follows the SOLID design

principle and is completely loosely coupled. Finally, if you were to check the interface

Illuminate\Contracts\Auth\Guard, what would you see? Let’s take a look so that you

can understand what happens behind the scenes. The code of that interface is pretty big,

so for brevity I have cut the attempt() method here.

Chapter 9 Containers and Facades

301

The interface looks like this:

//code 9.6

namespace Illuminate\Contracts\Auth;

interface Guard

{

/**

* Attempt to authenticate a user using the

given credentials.

*

* @param array $credentials

* @param bool $remember

* @param bool $login

* @return bool

*/

public function attempt(array $credentials = [],

$remember = false, $login = true);

.....

}

//this code is incomplete for brevity

Now your code is not coupled to any vendor or even to Laravel. You are not

compelled to follow a strict methodology by using a concrete class. You can simply

implement your own, alternative methodology from any contract.

�How a Container Works in Laravel
Let’s first try to understand what a Laravel service container is. Basically, it is a powerful

tool for managing class dependencies and performing dependency injection. The

dependencies can be injected via a constructor or through a method. If you can

separate all the resources and make them independent, you can use their dependencies

through method injection. If you have lots of methods to handle, then you can use the

constructor method.

Chapter 9 Containers and Facades

302

Let’s consider an example where you want to get all the users in one place. First, you

get the routes, as shown here:

//code 9.7

Route::get('allusers', 'UserController@getAllUsers');

So, here the method is getAllUsers(), and the URI is allusers. Now you can make

one user repository to get all the users. This will decouple your application. You do

not have to hit the database in your UserController. You do not even have to use your

model in the controller.

You have made a user repository class called DBUserRepository.php in your app/

Repositories/DBUserRepositories directory.

//code 9.8

<?php namespace RepositoryDB;

use RepositoryInterface\UserRepositoryInterface as UserRepositoryInterface;

use App\User;

use Illuminate\Http\Request;

class DBUserRepository implements UserRepositoryInterface {

 public function all() {

 return User::all();

 }

}

The interface code looks like this:

//code 9.9

<?php namespace RepositoryInterface;

 interface UserRepositoryInterface {

 public function all();

}

Chapter 9 Containers and Facades

303

UserController now can use either technique, the constructor injection or the

method injection.

//code 9.10

<?php

namespace App\Http\Controllers;

use App\User;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Auth;

use RepositoryDB\DBUserRepository as DBUserRepository;

class UserController extends Controller {

 public $users;

//constructor injection

 public function __construct(DBUserRepository $users) {

 $this->users = $users;

 }

//method injunction

 public function getAllUsers(DBUserRepository $users){

 return $this->users->all();

 }

//other methods and code continue

}

Chapter 9 Containers and Facades

304

You can get a view of the raw data output also, as shown in Figure 9-2.

Figure 9-1.  The example of method injection and a JSON output

If you hit the URI http://localhost:8000/allusers, you first see the JSON output,

as shown in Figure 9-1.

Chapter 9 Containers and Facades

305

So, you have injected a service that is able to retrieve all users. UserRepository gets

all users from a database. In the next section, you will see how you can bind your classes

and how your service container bindings are registered within the service container.

The output of method injection header is as follows:

//output

//method injection Header

Cache-Control: no-cache, private

Connection: close

Content-Type: application/json

Date: Thu, 14 Mar 2019 03:17:16 +0000, Thu, 14 Mar 2019 03:17:16 GMT

Host: localhost:8000

X-Powered-By: PHP/7.2.15-1+ubuntu16.04.1+deb.sury.org+1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,

image/webp,*/*;q=0.8

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.5

Figure 9-2.  The example of method injection as raw data

Chapter 9 Containers and Facades

306

Connection: keep-alive

DNT: 1

Host: localhost:8000

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:65.0) Gecko/20100101

Firefox/65.0

In the next section, you will see more examples of the relationship between

containers and classes and application bindings.

�Containers and Classes
The service container is one of Laravel’s greatest offerings. You can type-hint a lot of

classes and interfaces, and a lot of intelligence is going on inside. Laravel automatically

resolves the issues using reflection. In such cases, Laravel passes on instances,

recursively bringing about the chained instances.

Consider this code first:

//code 9.11

/**
 * Some comments about class Baz

 */

class Baz {};

/**
 * Some comments about class Bax

 */

class Bax

{

 public $baz;

 function __construct(Baz $baz)

 {

 $this->baz = $baz;

 }

}

Chapter 9 Containers and Facades

307

 /**
 * Some comments about class Bar

 */

 class Bar

 {

 public $bax;

 function __construct(Bax $bax)

 {

 $this->bax = $bax;

 }

 }

 Route::get('bar', function (Bar $bar) {

 dd($bar);

 });

The output is as follows:

//output

Bar {#299 ▼
 +bax: Bax {#300 ▼
 +baz: Baz {#301}

 }

}

If you want to get the Bax instance, you can do that by tweaking the last part, as

shown here:

//code 9.12

Route::get('bar', function (Bar $bar) {

 dd($bar->bax);

 });

Here is the output:

//output

Bax {#300 ▼
 +baz: Baz {#301}

}

Chapter 9 Containers and Facades

308

For beginners, this might look a little confusing. But once you understand it, you will

find that it is one of Laravel’s greatest offerings.

Why? Let me explain the previous code, and you will understand how Laravel

resolves the class dependencies and method injection automatically.

A service container is like a container that houses all of the classes and its bindings.

What is important is that you can type-hint any object and get that class instance

automatically.

In this code, you have type-hinted the Bar object, and through the Bar instance, you

have another class instance, Bax, as shown here:

Route::get('bar', function (Bar $bar) {

 dd($bar->bax);

 });

When running the code (code 9.11), you get this output:

//output of code 9.11

Bar {#299 ▼
 +bax: Bax {#300 ▼
 +baz: Baz {#301}

 }

}

In code 9.11, you are type-hinting only the Bar object, but you have chained

instances of other class dependencies. So many things are happening here.

When you pass the Bar object through the closure, Laravel finds out that you have

already passed the Bax object through the Bar constructor. Moreover, through the Bax

constructor, you are passing the Baz object. So, a kind of method chaining of class

dependencies takes place. However, Laravel has enough intelligence to resolve these

complex issues using reflection automatically.

According to Laravel’s documentation, you can also register a binding using the bind

method. To do that, you need to pass the class or interface name that you want to register

along with a closure that returns an instance of the class.

If you try to do the same thing without trying to bind the interface, an exception is

raised.

//code 9.13

class Bax implements InterfaceBax {};

Chapter 9 Containers and Facades

309

 class Bar

 {

 public $bax;

 function __construct(InterfaceBax $bax)

 {

 $this->bax = $bax;

 }

 }

 Route::get('bar', function (Bar $bar) {

 dd($bar);

 });

It gives you the following output:

//output

Target [InterfaceBax] is not instantiable while building [Bar].

But it works fine when you define the interface properly, and moreover, you can bind

it properly in this way:

//code 9.14

 interface InterfaceBax

 {

 // code...

 }

class Bax implements InterfaceBax

{

}

 class Bar

 {

 public $bax;

 function __construct(InterfaceBax $bax)

 {

 $this->bax = $bax;

 }

 }

Chapter 9 Containers and Facades

310

App::bind('Bar', function(){

 return new Bar(new Bax);

});

 Route::get('bar', function (Bar $bar) {

 dd($bar);

 });

Now you get this output:

//output

Bar {#295 ▼
 +bax: Bax {#296}

}

You can shorten the code in a more intelligent way, like this where you can just bind

the interface and the class name:

//code 9.15

 interface InterfaceBax

 {

 // code...

 }

class Bax implements InterfaceBax

{

}

 class Bar

 {

 public $bax;

 function __construct(InterfaceBax $bax)

 {

 $this->bax = $bax;

 }

 }

Chapter 9 Containers and Facades

311

App::bind('InterfaceBax', 'Bax');

 Route::get('bar', function (Bar $bar) {

 dd($bar);

 });

Look at this line in particular:

App::bind('InterfaceBax', 'Bax');

This changes the whole scenario. Now you can bind it to a container and resolve

something out of the container like this:

//code 9.16

 interface InterfaceBax

 {

 // code...

 }

class Bax implements InterfaceBax

{

}

 class Bar

 {

 public $bax;

 function __construct(InterfaceBax $bax)

 {

 $this->bax = $bax;

 }

 }

App::bind('InterfaceBax', 'Bax');

 Route::get('bar', function () {

 $bar = App::make('InterfaceBax');

 dd($bar);

 });

Chapter 9 Containers and Facades

312

In the previous code, look at this line:

$bar = App::make('InterfaceBax');

Here you use the make() function to resolve it and get this output straight out of

the box:

//output

Bax {#288}

You could have gotten the same result by using a helper function like app(). Look at

these three variations of code:

//code 9.17

 Route::get('bar', function () {

 $bar = app()->make('InterfaceBax');

 dd($bar);

 });

You can also pass the object as an array, as shown here:

//code 9.18

Route::get('bar', function () {

 $bar = app()['InterfaceBax'];

 dd($bar);

 });

Finally, you can pass it as an argument, as shown here:

 Route::get('bar', function () {

 $bar = app('InterfaceBax');

 dd($bar);

 });

In these three cases, you get the same result. Remember, the make method is used to

resolve a class instance out of the container. The make method accepts the name of the

class or interface you want to resolve.

Chapter 9 Containers and Facades

313
© Sanjib Sinha 2019
S. Sinha, Beginning Laravel, https://doi.org/10.1007/978-1-4842-4991-8_10

CHAPTER 10

Working with the Mail
Template
Sending mails and notifications through Laravel 5.8 is not complicated. The most

popular library to do this with is SwiftMailer (https://swiftmailer.symfony.com/). You

can install it in your root application directory.

�Local Development
To check your e-mail verification property locally, let’s install a fresh version of Laravel in

your home/code directory. You need a fresh Laravel installation to start with the concept

that the user is not verified initially.

//code 10.1

$ composer create-project --prefer-dist laravel/laravel laranew

Let’s check the version.

//code 10.2

ss@ss-H81M-S1:~/code/laranew$ php artisan -V

Laravel Framework 5.8.4

This specifies that I have a fresh Laravel 5.8.4 installation in home/code. I have named

it laranew.

https://swiftmailer.symfony.com/

314

Before moving on to explain the e-mail verification process in Laravel 5.8, let’s

take a look at the code of the User model. You have already learned that a fresh Laravel

installation comes with a User model. Specifically, it comes with the following code:

//code 10.3

//app/User.php

<?php

namespace App;

use Illuminate\Notifications\Notifiable;

use Illuminate\Contracts\Auth\MustVerifyEmail;

use Illuminate\Foundation\Auth\User as Authenticatable;

class User extends Authenticatable implements MustVerifyEmail

{

 use Notifiable;

 /**
 * The attributes that are mass assignable.

 *
 * @var array

 */

 protected $fillable = [

 'name', 'email', 'password',

];

 /**
 * The attributes that should be hidden for arrays.

 *
 * @var array

 */

 protected $hidden = [

 'password', 'remember_token',

];

Chapter 10 Working with the Mail Template

315

 /**
 * The attributes that should be cast to native types.

 *
 * @var array

 */

 protected $casts = [

 'email_verified_at' => 'datetime',

];

}

In the previous code, you are interested in two parts. The first one is as follows:

use Illuminate\Contracts\Auth\MustVerifyEmail;

The second one is as follows:

protected $casts = [

 'email_verified_at' => 'datetime',

];

The first line tells you about a contract. You have already learned about the role of a

contract. MustVerifyEmail has three methods defined in the source code. This contract

takes care of one property of user registration: the user must verify their e-mail if you

implement the contract in the User model.

Let’s again refer to the User model, as shown here:

//code 10.4

class User extends Authenticatable implements MustVerifyEmail

In previous chapters when you registered users, you did not implement this contract;

so, under normal circumstances, a user is greeted with the screen shown in Figure 10-1.

Chapter 10 Working with the Mail Template

316

Notice that there is no e-mail verification message. This is because you have not

implemented that contract in the User model. There is another reason also.

To understand this, you can check the database/migrations/user table, as shown

here:

//code 10.5

public function up()

 {

 Schema::create('users', function (Blueprint $table) {

 $table->bigIncrements('id');

 $table->string('name');

 $table->string('email')->unique();

 $table->timestamp('email_verified_at')->nullable();

 $table->string('password');

 $table->rememberToken();

 $table->timestamps();

 });

 }

Figure 10-1.  The user is greeted with this screen after registration

Chapter 10 Working with the Mail Template

317

Take a look at this line:

$table->timestamp('email_verified_at')->nullable();

and compare it with the line I have highlighted in your User model, as shown here:

protected $casts = [

 'email_verified_at' => 'datetime',

];

This attribute has been cast to the native type datetime, and for that reason in the

user table Laravel has kept it as nullable timestamp.

Because of this, when you register a new user without implementing the

MustVerifyEmail contract, your database user table shows null in that row. Let’s check it.

//code 10.6

mysql> show databases;

+-----------------------+

| Database |

+-----------------------+

| information_schema |

| b2a |

| firstnews |

| imagery |

| laravel55 |

| laravelforartisans |

| laravelforbeginning |

| laravelmodelrelations |

| laravelrelations |

| laravelstarttofinish |

| myappo |

| mymvc |

| mysql |

| newdata |

| news |

| performance_schema |

| practiceone |

| prisma |

Chapter 10 Working with the Mail Template

318

| sys |

| test |

| twoprac |

+-----------------------+

21 rows in set (0.20 sec)

mysql> use newdata;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

mysql> show tables;

+-------------------+

| Tables_in_newdata |

+-------------------+

| migrations |

| password_resets |

| users |

+-------------------+

3 rows in set (0.00 sec)

mysql> select * from users;

+----+--------+-------------------------+---------------------+----------

--+----------------+----

-----------------+---------------------+

| id | name | email | email_verified_at | password

| remember_token | created_at | updated_at |

+----+--------+-------------------------+---------------------+----------

--+----------------+----

-----------------+---------------------+

| 1 | ss | s@s.com | NULL |

$2y$10$T3lZcOOCC5C/OIRpOSO2SefpKfhtJF8myWaLeLAgNU4nthruQ2Dgu | NULL

| 2019-03-17 03:51:29 | 2019-03-17 03:51:29 |

Chapter 10 Working with the Mail Template

319

| 2 | sanjib | sanjib12sinha@gmail.com | 2019-03-17 03:59:08 |

$2y$10$kv34GZLUvIZLt/UqprrjCuOeS22.dI9i0R73vAX5IVfdLOiDpDauu | NULL

| 2019-03-17 03:54:22 | 2019-03-17 03:59:08 |

+----+--------+-------------------------+---------------------+-----------

---+----------------+----

-----------------+---------------------+

2 rows in set (0.01 sec)

�Using Tinker to Find the Verified E-mail
For more clarity, let’s use tinker and see the first user who has not e-mail verification.

//code 10.7

ss@ss-H81M-S1:~/code/laranew$ php artisan tinker

Psy Shell v0.9.9 (PHP 7.2.15-1+ubuntu16.04.1+deb.sury.org+1 — cli) by

Justin Hileman

>>> $user = new App\User;

=> App\User {#2925}

>>> $user;

=> App\User {#2925}

>>> $user = App\User::find(1);

=> App\User {#2933

 id: 1,

 name: "ss",

 email: "s@s.com",

 email_verified_at: null,

 created_at: "2019-03-17 03:51:29",

 updated_at: "2019-03-17 03:51:29",

 }

>>>

Take a look at this line from the previous code:

email_verified_at: null,

It is null because you have kept it as null. Moreover, you have not verified the

e-mail.

Chapter 10 Working with the Mail Template

320

In the next step, you will implement e-mail verification so you can see how it works

with the local Laravel installation. You can test it with the help of your log file.

Before that, all you need to do is change the code of the env file in this manner:

//code 10.8

MAIL_DRIVER=log

MAIL_HOST=smtp.Mailtrap.io

MAIL_PORT=2525

MAIL_USERNAME=null

MAIL_PASSWORD=null

MAIL_ENCRYPTION=null

You have changed the MAIL_DRIVER property from smtp to log.

Next, take a look at this part of the app/Http/Kernel.php file:

//code 10.9

//app/Http/Kernel.php

protected $routeMiddleware = [

 'auth' => \App\Http\Middleware\Authenticate::class,

 �'auth.basic' => \Illuminate\Auth\Middleware\AuthenticateWithBasic

Auth::class,

 'bindings' => \Illuminate\Routing\Middleware\SubstituteBindings::class,

 'cache.headers' => \Illuminate\Http\Middleware\SetCacheHeaders::class,

 'can' => \Illuminate\Auth\Middleware\Authorize::class,

 'guest' => \App\Http\Middleware\RedirectIfAuthenticated::class,

 'signed' => \Illuminate\Routing\Middleware\ValidateSignature::class,

 'throttle' => \Illuminate\Routing\Middleware\ThrottleRequests::class,

 'verified' => \Illuminate\Auth\Middleware\EnsureEmailIsVerified::class,

];

The last line from the previous code is important here.

'verified' => \Illuminate\Auth\Middleware\EnsureEmailIsVerified::class

Either you can assign these route middleware components to groups or you can use

them individually. For this e-mail verification process, you will use the last middleware

individually.

Chapter 10 Working with the Mail Template

321

�Changing the Route
To use this middleware component, you need to change your route web.php file in this way:

//code 10.10

//routes/web.php

Route::get('/', function () {

 return view('welcome');

})->middleware('verified');

Auth::routes(['verify' => true]);

You have used the e-mail verification middleware at the right place; now you can

register a new user to see what happens, as shown in Figure 10-2.

Figure 10-2.  E-mail verification notice has been issued

Next, go to storage/logs/laravel-2019-03-17.log to see the following output:

//code 10.11

// storage/logs/laravel-2019-03-17.log

Content-Type: text/plain; charset=utf-8

Content-Transfer-Encoding: quoted-printable

Chapter 10 Working with the Mail Template

322

[Laravel](http://localhost)

Hello!

Please click the button below to verify your email address.

Verify Email Address: http://localhost:8000/email/verify/2?expires=1552798

462&signature=80dd1cd1315533a03d03f66fb0e90b5a9b21c454257b6a7e96b4d5ed9059

b2f1

If you did not create an account, no further action is required.

Regards,Laravel

If you're having trouble clicking the "Verify Email Address" button, copy

and paste the URL below into your web browser:

[http://localhost:8000/email/verify/2?expires=1552798462&signature=80d

d1cd1315533a03d03f66fb0e90b5a9b21c454257b6a7e96b4d5ed9059b2f1](http://

localhost:8000/email/verify/2?expires=1552798462&signature=80dd1cd1315533a0

3d03f66fb0e90b5a9b21c454257b6a7e96b4d5ed9059b2f1)

© 2019 Laravel. All rights reserved.

Basically, this sends an e-mail to the newly registered user and gives the user links

that they can click to verify their e-mail.

So. let’s click this link and see what happens:

http://localhost:8000/email/verify/2?expires=1552798462&signature=80dd1cd13

15533a03d03f66fb0e90b5a9b21c454257b6a7e96b4d5ed9059b2f1

Next, open your terminal. By using Tinker, you can see the status of the second user.

//code 10.12

ss@ss-H81M-S1:~$ cd code/laranew/

ss@ss-H81M-S1:~/code/laranew$ php artisan tinker

Psy Shell v0.9.9 (PHP 7.2.15-1+ubuntu16.04.1+deb.sury.org+1 — cli) by

Justin Hileman

>>> $user = App\User::find(2);

=> App\User {#2932

 id: 2,

 name: "sanjib",

Chapter 10 Working with the Mail Template

323

 email: "sanjib12sinha@gmail.com",

 email_verified_at: "2019-03-17 03:59:08",

 created_at: "2019-03-17 03:54:22",

 updated_at: "2019-03-17 03:59:08",

 }

>>>

Look at this line:

email_verified_at: "2019-03-17 03:59:08",

The e-mail has been verified. It no longer shows as null.

Now if you want to know what happens in the background, you can take a look at the

event listener property of the file app/Providers/EventServiceProvider.php.

//code 10.13

// app/Providers/EventServiceProvider.php

protected $listen = [

 Registered::class => [

 SendEmailVerificationNotification::class,

],

];

Whenever you implement this attribute to the User model (class User extends

Authenticatable implements MustVerifyEmail), this event fires when a new user

registers.

�Sending E-mail and Notifications
In this section, you will see how to send e-mails using a Laravel application. You will do

this through a live web portal at https://sanjib.site, although the same test can be

done in the local environment.

Then you will learn how to send notifications. I have done that locally. In both cases,

I have used the free Mailtrap service. Laravel also has the option that you can buy third-

party e-mail services.

Chapter 10 Working with the Mail Template

https://sanjib.site

324

�Sending E-mails
There are several options for sending e-mails from your Laravel 5.8 application. The default

option given in your .env file is SMTP, but you can override it with several other options,

such as Mailgun, SparkPost, Amazon SES, PHP’s mail function, and sendmail. Note that

sending mail through a cloud-based service requires registration and a service cost.

Although the API-based services such as Mailgun and Sparkpost are simpler and

faster than the default SMTP servers, they require the Guzzle HTTP library. You can

install it via the Composer package manager using this command:

//code 10.14

$ composer require guzzlehttp/guzzle

After the installation of Guzzle, you need to change the driver option in your

config/mail.php configuration file to mailgun.

This config/mail.php file is extremely important for your e-mail service. You will

see that code in a minute.

Here, I am going to show you the mail-sending process using Mailtrap. It uses the

default SMTP driver, and it is free; you can use a dummy mailbox to test the process and

actually inspect the final e-mails in Mailtrap’s message viewer.

//code 10.15

//config/mail.php

<?php

return [

 /*
 |--

 | Mail Driver

 |--

 |

 | Laravel supports both SMTP and PHP's "mail" function as drivers for the

 | sending of e-mail. You may specify which one you're using throughout

 | your application here. By default, Laravel is setup for SMTP mail.

 |

Chapter 10 Working with the Mail Template

325

 | Supported: "smtp", "sendmail", "mailgun", "mandrill", "ses",

 | "sparkpost", "log", "array"

 |

 */

 'driver' => env('MAIL_DRIVER', 'smtp'),

 /*
 |--

 | SMTP Host Address

 |--

 |

 | Here you may provide the host address of the SMTP server used by your

 | applications. A default option is provided that is compatible with

 | the Mailgun mail service which will provide reliable deliveries.

 |

 */

 'host' => env('MAIL_HOST', 'smtp.Mailtrap.io'),

 /*
 |--

 | SMTP Host Port

 |--

 |

 | This is the SMTP port used by your application to deliver e-mails to

 | users of the application. Like the host we have set this value to

 | stay compatible with the Mailgun e-mail application by default.

 |

 */

 'port' => env('MAIL_PORT', 465),

 /*
 |--

 | Global "From" Address

 |--

 |

Chapter 10 Working with the Mail Template

326

 | You may wish for all e-mails sent by your application to be sent from

 | the same address. Here, you may specify a name and address that is

 | used globally for all e-mails that are sent by your application.

 |

 */

 'from' => [

 'address' => env('MAIL_FROM_ADDRESS', 'me@sanjib.site'),

 'name' => env('MAIL_FROM_NAME', 'Sanjib Sinha'),

],

 /*
 |--

 | E-Mail Encryption Protocol

 |--

 |

 | Here you may specify the encryption protocol that should be used when

 | the application send e-mail messages. A sensible default using the

 | transport layer security protocol should provide great security.

 |

 */

 'encryption' => env('MAIL_ENCRYPTION', 'tls'),

 /*
 |--

 | SMTP Server Username

 |--

 |

 | If your SMTP server requires a username for authentication, you should

 | set it here. This will get used to authenticate with your server on

 | connection. You may also set the "password" value below this one.

 |

 */

Chapter 10 Working with the Mail Template

327

 'username' => env('MAIL_USERNAME'),

 'password' => env('MAIL_PASSWORD'),

 /*
 |--

 | Sendmail System Path

These lines are especially important to note in the previous code:

'driver' => env('MAIL_DRIVER', 'smtp'),

'host' => env('MAIL_HOST', 'smtp.Mailtrap.io'),

'port' => env('MAIL_PORT', 465),

'from' => [

 'address' => env('MAIL_FROM_ADDRESS', 'me@sanjib.site'),

 'name' => env('MAIL_FROM_NAME', 'Sanjib Sinha'),

],

In the from field, you can use any other e-mail address and your name. Before using

the Mailtrap service, all you need to do is to register with Mailtrap.

Next, the .env file is important. You need to change this part according to the

username and password of your Mailtrap service.

//code 10.16

//.env

MAIL_DRIVER=smtp

MAIL_HOST=smtp.Mailtrap.io

MAIL_PORT=465

MAIL_USERNAME=**************
MAIL_PASSWORD=**************
MAIL_ENCRYPTION=null

This time I am going to send mail from my live web application at https://sanjib.

site. Don’t worry; you can do the same thing from your local Laravel application using

http://localhost:8000.

First, you configure the file config/mail.php; second, you change the .env file with

your Mailtrap username and password. Remember one thing: when you are testing your

application online, you need to use port 465. When you are doing the same thing, use

port 2525 that comes by default with your installed Laravel application.

Chapter 10 Working with the Mail Template

https://sanjib.site
https://sanjib.site

328

The next step will take you to the artisan command. If you are online, use SSH, and

if you are in a local environment, use your terminal.

//code 10.17

$ php artisan make:mail SendMailable

This command creates a Mail folder inside the app directory, and in the Mail folder a

new SendMailable class has been created.

//code 10.18

//app/Mail/SendMailable.php

<?php

namespace App\Mail;

use Illuminate\Bus\Queueable;

use Illuminate\Mail\Mailable;

use Illuminate\Queue\SerializesModels;

use Illuminate\Contracts\Queue\ShouldQueue;

class SendMailable extends Mailable

{

 use Queueable, SerializesModels;

 public $name;

 /**
 * Create a new message instance.

 *
 * @return void

 */

 public function __construct($name)

 {

 $this->name = $name;

 }

 /**
 * Build the message.

 *
 * @return $this

 */

Chapter 10 Working with the Mail Template

329

 public function build()

 {

 return $this->view('email.name');

 }

}

By default the SendMailable class will instantiate a message. For the sake of brevity,

I have kept it simple and used a name attribute. This name variable will be passed to the

following build method automatically, which will return a view Blade page. This means

you can pass a full HTML page with your message to the recipient.

So, you can take the next step and create a simple view page called name.blade.php

inside resources/views/email.

//code 10.19

//resources/views/email/name.blade.php

<div>

 Hi, This is : {{ $name }}

</div>

At the same time in your HomeController, you will create a new method named mail.

//code 10.20

//app/Http/Controllers/HomeController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Mail;

use App\Mail\SendMailable;

class HomeController extends Controller

{

 /**
 * Create a new controller instance.

 *
 * @return void

 */

Chapter 10 Working with the Mail Template

330

 public function __construct()

 {

 $this->middleware('auth');

 }

 /**
 * Show the application dashboard.

 *
 * @return \Illuminate\Contracts\Support\Renderable

 */

 public function index()

 {

 return view('home');

 }

 public function mail()

{

 $name = 'Sanjib';

 Mail::to('me@sanjib.site')->send(new SendMailable($name));

 return 'Email was sent';

}

}

Since I am going to test the mail-sending process online, I have chosen the

HomeController so that it will not work without authentication.

In your routes, you need to register the method now so that when you type that URI,

the user will be verified and you will see them in your PHPMyAdmin interface, as shown

in Figure 10-3.

Chapter 10 Working with the Mail Template

331

Figure 10-3.  The user verification is reflected in PHPMyAdmin

//code 10.21

//routes/web.php

Route::get('/send/email', 'HomeController@mail');

You have completed all the steps. Now it is time to test whether your mail has been

sent successfully.

I have typed https://sanjib.site/send/email, and I got the response shown in

Figure 10-4 in my browser.

Chapter 10 Working with the Mail Template

https://sanjib.site/send/email

332

The next step is to check the Mailtrap inbox, so log in to Mailtrap. You will find that

the e-mail was sent successfully “a minute ago” (Figure 10-5).

Figure 10-4.  The email has been sent successfully

Chapter 10 Working with the Mail Template

333

Let’s take a look at the HTML source. I have used a simple HTML template page, and

in your Mailtrap inbox you can see everything, including the HTML source and the raw

output; you can also analyze the whole process.

The HTML source is the same as you saw in your resources/views/email/name.

blade.php file.

//code 10.22

<div>

 Hi, This is : Sanjib

</div>

Figure 10-5.  Mailtrap inbox showing that the Laravel application has sent the
email successfully

Chapter 10 Working with the Mail Template

334

The only change is that it has caught the variable $name. You have used the same

name variable in your HomeController mail method, as shown here:

//code 10.23

 public function mail()

{

 $name = 'Sanjib';

 Mail::to('me@sanjib.site')->send(new SendMailable($name));

 return 'Email was sent';

}

The Mailtrap raw output looks like this:

//code 10.24

Message-ID: <e792cc1223e458eccf9e01f7620c6be1@sanjib.site>

Date: Fri, 22 Mar 2019 03:34:08 +0000

Subject: Send Mailable

From: Sanjib Sinha <me@sanjib.site>

To: me@sanjib.site

MIME-Version: 1.0

Content-Type: text/html; charset=utf-8

Content-Transfer-Encoding: quoted-printable

<div>

 Hi, This is : Sanjib

</div>

Like sending e-mails, sending notifications is easy through any Laravel application.

In the next section, you will learn how to test the notification process locally.

�How to Send Notifications
You saw how Laravel makes sending e-mails easy. In addition, Laravel provides support

for sending notifications. There are varieties of delivery channels you can use while

sending a short notification.

You can send the notification through mail or through SMS (via Nexmo, https://

www.nexmo.com/). By the way, Nexmo uses APIs for SMS, voice, and phone verifications.

Chapter 10 Working with the Mail Template

https://www.nexmo.com/
https://www.nexmo.com/

335

The notifications can also be stored in a database so that you can display them in any

web interface.

As you know, any notification should be short and informational in nature. When a

new user registers, you may want to get a notification.

Here you will use the mail delivery system using Mailtrap, as you have used it

already. First, you need to change the .env code to this:

//code 10.25

//.env

MAIL_DRIVER=smtp

MAIL_HOST=smtp.Mailtrap.io

MAIL_PORT=2525

MAIL_USERNAME=*****************
MAIL_PASSWORD=*****************
MAIL_ENCRYPTION=tls

Next, we will issue this command on your terminal.

//code 10.26

$ php artisan make:notification NewuserRegistered

Once you have issued this command, in your app/Notifications directory, you get

the NewuserRegistered.php file.

//code 10.27

//app/Notifications/NewuserRegistered.php

<?php

namespace App\Notifications;

use Illuminate\Bus\Queueable;

use Illuminate\Notifications\Notification;

use Illuminate\Contracts\Queue\ShouldQueue;

use Illuminate\Notifications\Messages\MailMessage;

class NewuserRegistered extends Notification

{

 use Queueable;

Chapter 10 Working with the Mail Template

336

 /**
 * Create a new notification instance.

 *
 * @return void

 */

 public function __construct()

 {

 //

 }

 /**
 * Get the notification's delivery channels.

 *
 * @param mixed $notifiable

 * @return array

 */

 public function via($notifiable)

 {

 return ['mail'];

 }

 /**
 * Get the mail representation of the notification.

 *
 * @param mixed $notifiable

 * @return \Illuminate\Notifications\Messages\MailMessage

 */

 public function toMail($notifiable)

 {

 return (new MailMessage)

 ->line('A new user just registered.')

 ->action('MyApp', url('/'))

 ->line('Thank you for using our application!');

 }

Chapter 10 Working with the Mail Template

337

 /**
 * Get the array representation of the notification.

 *
 * @param mixed $notifiable

 * @return array

 */

 public function toArray($notifiable)

 {

 return [

 //

];

 }

}

The default delivery channel of notifications is mail. You have not changed that. You

can change this part:

 public function toMail($notifiable)

 {

 return (new MailMessage)

 ->line('A new user just registered.')

 ->action('MyApp', url('/'))

 ->line('Thank you for using our application!');

 }

The correct setting depends on what type of notification you want to get or send to

the user.

Suppose user 1 is the administrator here; in that case, you want to send the new user

registration notification to user 1. So, you need to register the route in this way:

//code 10.28

//resources/web.php

use App\Notifications\NewuserRegistered;

use App\User;

Route::get('/notify', function () {

User::find(1)->notify(new NewuserRegistered);

 return view('notify');

});

Chapter 10 Working with the Mail Template

338

Since I hard-coded everything to give you an idea of how it works, you should type

http://localhost:8000/notify in your browser to fire the mail.

This automatically sends the notification to your Mailtrap inbox, as shown in

Figure 10-6.

Figure 10-6.  Notification of new user registration in the inbox of Mailtrap

Here is the text output of your new user registration notification in your Mailtrap

inbox:

//code 10.29

[Laravel](http://localhost)

Hello!

A new user just registered.

MyApp: http://localhost:8000

Thank you for using our application!

Regards,Laravel

Chapter 10 Working with the Mail Template

339

If you're having trouble clicking the "MyApp" button, copy and paste the

URL below

into your web browser: http://localhost:8000

© 2019 Laravel. All rights reserved.

Chapter 10 Working with the Mail Template

341
© Sanjib Sinha 2019
S. Sinha, Beginning Laravel, https://doi.org/10.1007/978-1-4842-4991-8_11

CHAPTER 11

Events and Broadcasting
In the previous chapter, you learned how to send e-mails and notifications. In this

chapter, you will learn about events and broadcasting, which, at the beginning, may look

similar to notifications but are not.

�What Are Events and Broadcasting?
Although the difference between notification and events may not be clear at first, events

and notifications have distinct characteristics and are used for different purposes.

To express this difference in one line, you could say that events are for when you

need to do something, and notifications are for when something happens in your

application. In other words, events trigger actions (such as when system failure and

restoration actions need to be performed), and notifications are sent for all events.

So, events are like announcements of something that you listen for, and notifications

are issued when something just happened.

I would like to reiterate that, at the beginning, the difference is so marginal and

looks almost invisible that people often use events when notifications are more useful,

and vice versa. However, the range of activities that an event can handle is enormous.

Because of that, notifications can be managed through events.

Let me clarify with an example.

Suppose, in the administrative panel, you want to know when a new user registers.

You do not want to reload the page to get the update but rather have the event carry out

the action for you. Although you might think to use a notification, actually here an event

could be more useful, as you can do many tasks with the help of one event. Sometimes

doing many tasks with the help of a single resource controller can lead you to tightly

coupled classes, which is not your goal. In these cases, you could use Laravel Echo,

which is an integral property of events and broadcasting. Laravel Echo will automatically

append the newly registered users to your list, and you can use the ShouldBroadcast

interface to sync data with your administrative panel.

342

As another example, on any social media platform, each time you log in, you see

some notifications about things that happened while you were away. Live notifications

also take place when you are present on social media platforms. So, you can use the

notify method on your Eloquent models such as App\User to send an SMS to the newly

registered user that their registration has been approved.

Moreover, you can handle notifications through your events, but you cannot do the

opposite. On an e-commerce site, as an application developer, you need to manage a lot

of steps when a product is purchased. If you want to arrange them in a single controller,

it could get messy. On the other hand, it could be a good approach to manage them

through an event where you can have different listeners, and through events you can

broadcast them to those listeners. These listeners could be the different steps through

which you can manage sending notifications, generating invoices, and so on.

So in this application, you can have several listeners through which you can create

notifications, send e-mails, and so on.

I hope you understand the slight differences between these two major features of

Laravel. Next, you will see how you can set up and configure events and broadcasting.

�Setting Up Events and Broadcasting
There is a popular software design pattern called the observer pattern. In the observer

pattern, the system is supposed to fire events and broadcast them to listeners, and at

the same time different tasks are delegated. You can define listeners who listen to these

events. The main advantage of the observer pattern is it decouples the classes.

The concept of events in Laravel is based on this popular software design pattern. It’s

a really useful feature in a way that allows you to decouple components in a system that

otherwise would have resulted in tightly coupled code. It actually adheres to the SOLID

design principle: one class, one single task, and one responsibility. The simple observer

implementation allows you to subscribe and listen for various events that occur in the

application.

As you progress, you will find that there is a small difference between subscribers

and listeners. When an event fires, a subscriber can subscribe to multiple event listeners

in a single place, whereas a single listener can listen to a single event. Here context is

the key. If you want to contain many events in a single place, a subscriber is a good

option. However, to understand when you need subscribers, you need to understand the

listeners first.

Chapter 11 Events and Broadcasting

343

The event classes are stored in the app/Events directory, and the listeners are stored

in the app/Listeners directory.

They can be manually created, or they can be autogenerated. If you want to

autogenerate events and listeners, you need to have registered them with the event

service provider first.

You will see examples of this in a minute. You can create them using artisan

commands.

The greatest advantage of events is since they have multiple listeners, the classes

are left with single and precise tasks. The listeners do not depend on each other. In the

coming sections, you will see how the creation of a message fires events that do several

things at the same time. All these tasks can be done through the controller methods

create and store (although, in the store method, you have only one event). That is the

magic you are going to create.

�Creating Events
Creating a simple message creation application will help you to understand the core

concept of events and broadcasting. Each time one user posts a message, a single event

fires, and the event broadcasts the message to different decoupled listeners.

This event handles multiple loosely coupled listeners that have no interaction with

each other. One listener sends an e-mail. Two other listeners handle different tasks, such

as sending e-mail messages or notifications in the browser.

Usually in such cases, a JavaScript framework like Vue.js is of great help. You can

do splendid things using Vue, and the real-time message handling API Pusher is also

helpful. Laravel has boundless support for these two tools.

Let’s first start with a resourceful controller, as shown here:

//code 11.1

$ php artisan make:controller CreatemessageController –resource

For displaying and showing messages, the full controller methods look like this:

//code 11.2

//app/Http/Controllers/ CreatemessageController.php

<?php

namespace App\Http\Controllers;

Chapter 11 Events and Broadcasting

344

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Auth;

use App\User;

use App\Message;

use App\Events\AboutTheUser;

class CreatemessageController extends Controller

{

 /**
 * Create a new controller instance.

 *
 * @return void

 */

 public function __construct()

 {

 $this->middleware('auth');

 }

 /**
 * Display a listing of the resource.

 *
 * @return \Illuminate\Http\Response

 */

 public function index()

 {

 if (Auth::check()){

 $messages = Message::get();

 return view('messages.index', compact('messages'));

 }

 }

 /**
 * Show the form for creating a new resource.

 *
 * @return \Illuminate\Http\Response

 */

Chapter 11 Events and Broadcasting

345

 public function create()

 {

 if(Auth::check()){

 return view('messages.create');

 }

 return view('auth.login');

 }

 /**
 * Store a newly created resource in storage.

 *
 * @param \Illuminate\Http\Request $request

 * @return \Illuminate\Http\Response

 */

 public function store(Request $request)

 {

 if(Auth::check()){

 $name = Auth::user();

 $message = Message::create([

 'user_id' => Auth::user()->id,

 'message' => $request->input('message')

]);

 if($name){

 //step one: fire the event

 event(New AboutTheUser($name));

 }

 }

 }

 /**
 * Display the specified resource.

 *
 * @param int $id

Chapter 11 Events and Broadcasting

346

 * @return \Illuminate\Http\Response

 */

 public function show(Message $message)

 {

 if(Auth::check()){

 $message = Message::find($message->id);

 return view('messages.show', ['message' => $message]);

 }

 return view('auth.login');

 }

}

As you can see, you don’t have any edit, update, or destroy methods here. You are

going to create a message, and at the same time it will fire an event like this:

//step one: fire the event

event(New AboutTheUser($name));

In your CreatemessageController controller action App\Http\Controllers\

CreatemessageController@store, you have only one line of event code, and that event

has delegated those tasks to the various listeners.

This is the beauty of Laravel events, where through a single event you can delegate

several tasks to different listeners that are loosely coupled and they handle single tasks.

You will see how to create events and listeners in a minute; before that, you need to

create a Message model and respective database table. You also define the relationship

between the Message and User models.

Next you need a Message model, and the database table migration will be created

along with it.

//code 11.3

$ php artisan make:model Message -m

Here is the model Message:

//code 11.4

//app/Message.php

<?php

Chapter 11 Events and Broadcasting

347

namespace App;

use Illuminate\Database\Eloquent\Model;

class Message extends Model

{

 /**
 * Fields that are mass assignable

 *
 * @var array

 */

 protected $fillable = ['message', 'user_id'];

 /**
 * A message belong to a user

 *
 * @return \Illuminate\Database\Eloquent\Relations\BelongsTo

 */

 public function user()

 {

 return $this->belongsTo(User::class);

 }

}

One message belongs to a single user, and you have defined that in your Message

model.

At the same time, you should define an inverse relationship in your User model too,

as shown here:

//code 11.5

//app/User.php

<?php

namespace App;

use Illuminate\Notifications\Notifiable;

use Illuminate\Foundation\Auth\User as Authenticatable;

class User extends Authenticatable

Chapter 11 Events and Broadcasting

348

{

 use Notifiable;

 /**
 * The attributes that are mass assignable.

 *
 * @var array

 */

 protected $fillable = [

 'name', 'email', 'password',

];

 /**
 * The attributes that should be hidden for arrays.

 *
 * @var array

 */

 protected $hidden = [

 'password', 'remember_token',

];

 /**
 * A user can have many messages

 *
 * @return \Illuminate\Database\Eloquent\Relations\HasMany

 */

 public function messages()

 {

 return $this->hasMany(Message::class);

 }

}

One user can have many messages.

Now you are all are set, and you can work on the view templates where you display

your messages and show the create form.

Chapter 11 Events and Broadcasting

349

To do that, you need three view pages for showing and creating messages. I am not

going to show all the parts of the view pages here for brevity. I will point out only the

relevant parts.

//code 11.6

//resources/views/messages/index.blade.php

<div class="blog-post">

 <ul class="list-group">

 @foreach ($messages as $message)

 <li class="list-group-item"><h2 class="blog-post-title">

 �id }}">{{

$message->message }}

 </h2>

 �id }}/edit">Edit

 @endforeach

 </div>

Next you need to see the separate message in your show template, as shown here:

//code 11.7

//resources/views/messages/show.blade.php

<div class="col-md-8 blog-main col-lg-8 blog-main col-sm-8 blog-main">

 <h3 class="pb-3 mb-4 font-italic border-bottom">

 The Message

 </h3>

 <h3 class="pb-3 mb-4 font-italic border-bottom">

 {{ $message->message }} posted by {{ $message->user['name'] }}

 </h3>

 </div>

Chapter 11 Events and Broadcasting

350

Finally, you want to create messages using a form, as shown here:

//code 11.8

//resources/views/messages/create.blade.php

<div class="col-md-8 blog-main col-lg-8 blog-main col-sm-8 blog-main">

 <h3 class="pb-3 mb-4 font-italic border-bottom">

 All Messages

 </h3>

 <div class="blog-post">

 <h2 class="blog-post-title"></h2>

 <form method="post" action="{{ route('messages.store') }}">

 {{ csrf_field() }}

 <div class="form-group">

 �<label for="message">Name∗
</label>

 <input placeholder="Enter message"

 id="message"

 required

 name="message"

 spellcheck="false"

 class="form-control"

 />

 </div>

 <div class="form-group">

 <input type="submit" class="btn btn-primary"

 value="Submit"/>

 </div>

 </form>

 </div>

 </div>

This is a simple form to create a single message. Each user has to log in, and only

then can the user post a message through the controller.

Chapter 11 Events and Broadcasting

351

You need to register your routes, which is quite simple.

//code 11.9

//routes/web.php

Route::get('/', function () {

 return view('welcome');

});

Auth::routes();

Route::resource('messages', 'CreatemessageController');

Route::get('/home', 'HomeController@index')→name('home');

Here you are concerned only about the route messages and the resourceful controller

CreatemessageController. When you type http://localhost:8000/messages, it takes

you to the login page. Any user can log into the system and create messages. You get to

that form at the URL http://localhost:8000/messages/create.

You have a few messages to display first (see Figure 11-1).

Figure 11-1.  There are several messages that one user called sanjib has created

Chapter 11 Events and Broadcasting

352

The user creates messages using the form page shown in Figure 11-2.

Figure 11-2.  The user can create messages here

While a user creates a message, an event automatically fires through the controller

store method. Let’s create the event manually first; then you will see how events can

be generated automatically. To understand events, listeners, and subscribers, you need

to install a fresh Laravel application, called laraeventandlisteners, in your code

directory. The source code is available in the code download; please take a look while

studying this chapter.

//code 11.10

ss@ss-H81M-S1:~/code/laraeventandlisteners$ php artisan make:event

AboutTheUser

Event created successfully.

Chapter 11 Events and Broadcasting

353

The event AboutTheUser has been created in the app/Events directory. Let’s see the

code first; it’s as follows:

//code 11.11

//app/Events/AboutTheUser.php

<?php

namespace App\Events;

use Illuminate\Broadcasting\Channel;

use Illuminate\Queue\SerializesModels;

use Illuminate\Broadcasting\PrivateChannel;

use Illuminate\Broadcasting\PresenceChannel;

use Illuminate\Foundation\Events\Dispatchable;

use Illuminate\Broadcasting\InteractsWithSockets;

use Illuminate\Contracts\Broadcasting\ShouldBroadcast;

use Illuminate\Support\Facades\Auth;

use App\User;

class AboutTheUser

{

 use Dispatchable, InteractsWithSockets, SerializesModels;

public $name;

 /**
 * Create a new event instance.

 *
 * @return void

 */

 public function __construct($name)

 {

 $user = Auth::user();

 $this->name = $name;

 }

 /**
 * Get the channels the event should broadcast on.

 *

Chapter 11 Events and Broadcasting

354

 * @return \Illuminate\Broadcasting\Channel|array

 */

 public function broadcastOn()

 {

 return new PrivateChannel('channel-name');

 }

}

In the event constructor, you pass an authorized user object so that this event fires

only for the authorized users.

You need to create several listeners for this event, as shown here:

//code 11.12

ss@ss-H81M-S1:~/code/laraeventandlisteners$ php artisan make:listener

SendMailForNewMessage --event=AboutTheUser

Listener created successfully.

ss@ss-H81M-S1:~/code/laraeventandlisteners$ php artisan make:listener

AlertForNewMessage

Listener created successfully.

ss@ss-H81M-S1:~/code/laraeventandlisteners$ php artisan make:listener

AboutTheUser

Listener created successfully.

You have created three listeners for this event. Now you need to register those event

listeners to the EventServiceProvider so that the listen property, inside it, can contain

an array of all events (keys) and their listeners (values).

You can add as many events and respective listeners to this array as you need.

Let’s see the original EventServiceProvider code that comes with Laravel. You are

going to change it soon to fit your newly created events and listeners.

//code 11.13

//app/Providers/EventServiceProvider.php

//original one

<?php

namespace App\Providers;

Chapter 11 Events and Broadcasting

355

use Illuminate\Support\Facades\Event;

use Illuminate\Auth\Events\Registered;

use Illuminate\Auth\Listeners\SendEmailVerificationNotification;

use Illuminate\Foundation\Support\Providers\EventServiceProvider as

ServiceProvider;

class EventServiceProvider extends ServiceProvider

{

 /**
 * The event listener mappings for the application.

 *
 * @var array

 */

 protected $listen = [

 Registered::class => [

 SendEmailVerificationNotification::class,

],

];

 /**
 * Register any events for your application.

 *
 * @return void

 */

 public function boot()

 {

 parent::boot();

 //

 }

}

Next, you will register your event listeners here, and after the change it looks like this:

//code 11.14

//app/Providers/EventServiceProvider.php

//changed code where the listen property takes new values

<?php

Chapter 11 Events and Broadcasting

356

namespace App\Providers;

use Illuminate\Support\Facades\Event;

use Illuminate\Auth\Events\Registered;

use App\Events\AboutTheUser;

use App\Listeners\SendMailForNewMessage;

use App\Listeners\AlertForNewMessage;

use App\Listeners\AboutTheUser;

use Illuminate\Auth\Listeners\SendEmailVerificationNotification;

use Illuminate\Foundation\Support\Providers\EventServiceProvider as

ServiceProvider;

class EventServiceProvider extends ServiceProvider

{

 /**
 * The event listener mappings for the application.

 *
 * @var array

 */

 protected $listen = [

 AboutTheUser::class => [

 AlertForNewMessage::class,

 AboutTheUser::class,

 SendMailForNewMessage::class,

],

];

 /**
 * Register any events for your application.

 *
 * @return void

 */

 public function boot()

 {

 parent::boot();

Chapter 11 Events and Broadcasting

357

 //

 }

}

The entire listen property has been changed, and the event key

AboutTheUser::class points to three listener values.

•	 AlertForNewMessage::class

•	 AboutTheUser::class

•	 SendMailForNewMessage::class

Don’t forget to use the proper namespace at the top of the event service provider.

use App\Events\AboutTheUser;

use App\Listeners\SendMailForNewMessage;

use App\Listeners\AlertForNewMessage;

Now, you are ready to add code to the respective listeners. Let’s try to understand

one key concept of Laravel here. You want to create an application based on the SOLID

design principle. You could have done the same thing through the store method of your

controller. But in that case, the code meant for the listeners would have added to the

controller store method, making it tightly coupled.

You do not want to do that for one single reason: each class should have single

responsibility. In other words, each class should have single task to accomplish.

In the next section, you will see how the event fires and the tasks are delegated to the

respective listeners. You will also see the listeners’ code.

�Receiving Messages
Now you have three listeners in the app/Listeners directory.

//code 11.15

//app/Listeners/AboutTheUser.php

<?php

namespace App\Listeners;

use Illuminate\Queue\InteractsWithQueue;

use Illuminate\Contracts\Queue\ShouldQueue;

Chapter 11 Events and Broadcasting

358

class AboutTheUser

{

 /**
 * Handle the event.

 *
 * @param object $event

 * @return void

 */

 public function handle($event)

 {

 dump('Check whether the user in your friend lists');

 }

}

Just to make the concept clear, I have dumped the data. You can use a JavaScript

framework like Vue here so that each logged-in user can get notified and know about

the user who has posted the new post. The next listener will alert the users about the

message.

//code 11.16

//app/Listeners/AlertForNewMessage.php

<?php

namespace App\Listeners;

use Illuminate\Queue\InteractsWithQueue;

use Illuminate\Contracts\Queue\ShouldQueue;

use Illuminate\Support\Facades\Mail;

use Illuminate\Support\Facades\Auth;

use App\User;

class AlertForNewMessage

{

 /**
 * Handle the event.

 *
 * @param object $event

Chapter 11 Events and Broadcasting

359

 * @return void

 */

 public function handle($event)

 {

 //the event will handle the mail event

 dump('A new mesage has been posted on your post');

 }

}

I have dumped the message here like the previous one, although in the next listener,

SendMailForNewMessage, I will show how to test a real mail that will be sent when a user

posts a new message.

Let’s see the SendMailForNewMessage code first.

//code 11.17

//app/Listeners/SendMailForNewMessage.php

<?php

namespace App\Listeners;

use App\Events\NewMessagePosted;

use Illuminate\Queue\InteractsWithQueue;

use Illuminate\Contracts\Queue\ShouldQueue;

use Illuminate\Support\Facades\Mail;

use Illuminate\Support\Facades\Auth;

use App\Mail\MailForNewMessage;

class SendMailForNewMessage

{

 /**
 * Handle the event.

 *
 * @param NewMessagePosted $event

 * @return void

 */

Chapter 11 Events and Broadcasting

360

 public function handle(NewMessagePosted $event)

 {

 $user = Auth::user();

 Mail::to($user->email)->send(new MailForNewMessage());

 }

}

To test a real mail, you need to set up your environment through Mailtrap (you did

this in the previous chapter). In the .env file, I have included my Mailtrap key and other

requirements that are necessary for sending a mail.

//code 11.18

//.env

MAIL_DRIVER=smtp

MAIL_HOST=smtp.mailtrap.io

MAIL_PORT=2525

MAIL_USERNAME=*****************

MAIL_PASSWORD=*****************

MAIL_ENCRYPTION=tls

Creating a Mailtrap account is easy, and it is free to use their sandbox. So, please go

ahead and do that and change the username and password fields.

If I had not used a real mail environment using Mailtrap and instead just dumped

the data in the SendMailForNewMessage listener, you would see the screen shown in

Figure 11-3.

Chapter 11 Events and Broadcasting

361

Instead, you can use an artisan command to create a mail class called

MailForNewMessage.

//code 11.19

ss@ss-H81M-S1:~/code/laraeventandlisteners$ php artisan make:mail

MailForNewMessage --markdown emails.new-message

Mail created successfully.

You use the markdown flag to create a new-message blade template in the resources/

views/emails folder.

Let’s see the newly created MailForNewMessage class first, as shown here:

//code 11.20

//app/Mail/ MailForNewMessage.php

<?php

namespace App\Mail;

Figure 11-3.  Dumping all data when the event fires

Chapter 11 Events and Broadcasting

362

use Illuminate\Bus\Queueable;

use Illuminate\Mail\Mailable;

use Illuminate\Queue\SerializesModels;

use Illuminate\Contracts\Queue\ShouldQueue;

class MailForNewMessage extends Mailable

{

 use Queueable, SerializesModels;

 /**
 * Build the message.

 *
 * @return $this

 */

 public function build()

 {

 return $this->markdown('emails.new-message');

 }

}

In the resources/views/emails/new-message.blade.php file, you have some

autogenerated code that looks like this:

//code 11.21

@component('mail::message')

New Message

Hi a new message have been just posted

@component('mail::button', ['url' => ''])

Button Text

@endcomponent

Thanks,

{{ config('app.name') }}

@endcomponent

You are free to edit the code, and you can even completely change the whole HTML

look of this page. I have kept it as is just to wrap it up quickly.

Chapter 11 Events and Broadcasting

363

Now what happens when a user creates or posts a message?

An e-mail has been sent, and you have a message in your Mailtrap inbox (Figure 11-4).

Figure 11-4.  The mail has been sent, and the new-message.blade.php page is
reflected in your Mailtrap sandbox

So, you have successfully fired the event, and the event has broadcast the tasks to the

listeners. After that, the listeners take actions accordingly.

In conclusion, you could say events and listeners are an integral part of your Laravel

application for many reasons. However, the most important part is that they make your

application loosely coupled. That reflects the SOLID design principle, which is the goal.

Now you can add a $subscriber property to your EventServiceProvider class as

you have added the $listen property just like this:

protected $listen = [

 Registered::class => [

 SendEmailVerificationNotification::class,

],

];

Chapter 11 Events and Broadcasting

364

The $subscriber property will look like this:

/**
 * The subscriber classes to register.

 *
 * @var array

 */

 protected $subscribe = [

 'App\Listeners\EventServiceProvider ',

];

After that, you can create a subscriber class in your app/Listeners/

NewSubscriber.php directory and add a subscribe method where you can register

multiple events.

public function subscribe($events)

 {

 $events->listen(

 //code

);

 $events->listen(

 //code

);

 $events->listen(

 //code

);

 $events->listen(

 //code

);

 }

You can add multiple events this way.

One thing should be clear by now. You can call or use an event for multiple purposes.

In some cases, when your queued job fails, you can use the Queue::failing method.

This event is a great opportunity to notify your team via e-mail or any chatting app.

Chapter 11 Events and Broadcasting

365

AppServiceProvider is provided with the Laravel, where you can attach a callback to

any event that may fail.

Consider this code:

//app/Providers/AppServiceProvider.php

<?php

namespace App\Providers;

use Queue;

use Illuminate\Queue\Events\JobFailed;

use Illuminate\Support\ServiceProvider;

class AppServiceProvider extends ServiceProvider

{

 /**
 * Bootstrap any application services.

 *
 * @return void

 */

 public function boot()

 {

 Queue::failing(function (JobFailed $event) {

 // here goes your all events name and code

 });

 }

 /**
 * Register the service provider.

 *
 * @return void

 */

 public function register()

 {

 //

 }

}

Chapter 11 Events and Broadcasting

366

To summarize, event subscribers are classes that can subscribe to multiple events

from within the class itself, and this gives you a chance to define several event handlers

within that class. At the same time, there are several options to use events to handle the

failed jobs and notify the users at the same time.

�Autogenerating Events
Before concluding this chapter, I want to show you how to autogenerate the events. You

need to manually add the event’s key and listener values to the listen property in the

event service provider first. After that, you just run this command:

//code 11.22

$ php artisan event:generate

This will create all the missing events and listeners based on registration in your

event service provider.

Chapter 11 Events and Broadcasting

367
© Sanjib Sinha 2019
S. Sinha, Beginning Laravel, https://doi.org/10.1007/978-1-4842-4991-8_12

CHAPTER 12

Working with APIs
What allows a third party to easily interact with a Laravel application’s data? The answer

is an API.

Usually the API is based on JSON and REST or is REST-like. You can easily work with

JSON in your Laravel application, which gives Laravel a big advantage over other PHP

frameworks. Without an API you cannot interact with any third-party software that is

written in a different language and that works on different platforms. So, writing APIs is a

common task that Laravel developers do in their jobs.

Another advantage of Laravel is that its resource controllers are already structured

around REST verbs and patterns. This makes Laravel developers’ lives much easier.

In this chapter, you will learn to write an API.

�What Is REST?
Representational State Transfer (REST) is an architectural style for building APIs.

There are some heated arguments over the definition of REST in the computer world.

Please do not get overwhelmed by the definition or get caught in the crossfire. With

Laravel, when I talk about REST-like APIs, I generally mean they have a few common

characteristics; for example, they are structured around resources, and the APIs can be

represented by simple URIs.

The URI http://localhost:8000/articles is a representation of all articles. The URI

http:://localhost:8000/article/2 represents the second article. The representation of

second article goes on just like normal URI representation.

The stateless condition of APIs makes a big difference. Between requests, there is no

persistent session authentication, which means that each request needs to authenticate

itself. Finally, the major advantage is it can return JSON, which the server understands.

That is the reason why a third party can easily interact with a Laravel application.

368

The main purpose of building an API is to enable another application to

communicate with your application without any issues. The server knows XML and

JSON; however, JSON is the most popular choice now. So, when you return your data in

JSON, the ease of communication increases.

�Creating an API
To create an API, you need controllers and models as usual. But, at the same time, you

need to transform your models and model collections into JSON. For that, you want

Laravel’s resource classes. They allow you to transform data into JSON.

You can imagine your resource classes as a transformation layer that sits between

your Eloquent models and the JSON responses.

Let’s start from scratch. The first step is to create a fresh Laravel project.

//code 12.1

$ composer create-project --prefer-dist laravel/laravel apilara

Let’s say you want to create an Article API. So, you need a model, database table,

and controller.

//code 12.2

//creating a controller

$ php artisan make:controller ArticleController --resource

Controller created successfully.

Next, you need an Article model and a database table, as shown here:

//code 12.3

$ php artisan make:model Article -m

The database table should have two fields, title and body, as shown here:

//code 12.4

<?php

use Illuminate\Support\Facades\Schema;

use Illuminate\Database\Schema\Blueprint;

use Illuminate\Database\Migrations\Migration;

Chapter 12 Working with APIs

369

class CreateArticlesTable extends Migration

{

 /**
 * Run the migrations.

 *
 * @return void

 */

 public function up()

 {

 Schema::create('articles', function (Blueprint $table) {

 $table->bigIncrements('id');

 $table->string('title');

 $table->text('body');

 $table->timestamps();

 });

 }

 /**
 * Reverse the migrations.

 *
 * @return void

 */

 public function down()

 {

 Schema::dropIfExists('articles');

 }

}

Before building an API, you should fill the Article table with some fake data with

the help of a database seeder. To do this, you need to create ArticlesTableSeeder and

ArticleFactory, as shown here:

//code 12.5

$ php artisan make:seeder ArticlesTableSeeder

Seeder created successfully.

//code 12.6

$ php artisan make:factory ArticleFactory

Factory created successfully

Chapter 12 Working with APIs

370

Let’s change the code of both ArticlesTableSeeder and ArticleFactory, as shown

here:

//code 12.7

//database/seeds/ ArticlesTableSeeder.php

<?php

use Illuminate\Database\Seeder;

use App\Article;

class ArticlesTableSeeder extends Seeder

{

 /**
 * Run the database seeds.

 *
 * @return void

 */

 public function run()

 {

 factory(Article::class, 30)->create();

 }

}

This will create 30 articles. Next, you need to prepare your factory class to fill up the

articles table, as shown here:

//code 12.8

// database/factories/ArticleFactory.php

<?php

use Faker\Generator as Faker;

$factory->define(App\Article::class, function (Faker $faker) {

 return [

 'title' => $faker->text(50),

 'body' => $faker->text(300)

];

});

Chapter 12 Working with APIs

371

The title property will have a maximum of 50 characters, and for the body you will

be content with 300 characters for demonstration purposes.

Let’s fill the database table, as shown here:

//code 12.9

$ php artisan db:seed

Seeding: ArticlesTableSeeder

Database seeding completed successfully.

After the completion of database seeding, you will generate the resource class. To do

that, you will use the make:resource Artisan command.

//code 12.10

$ php artisan make:resource Article

Resource created successfully.

These resources are created to transform the individual models. You may want to

generate resources that are responsible for transforming collections of models. This

allows you to include links and other meta information in your response.

To create a resource collection, either you can use the --collection flag or you can

include the word Collection in the resource name. The word Collection will indicate

to Laravel that it should create a collection resource. Collection resources extend the

Illuminate\Http\Resources\Json\ResourceCollection class. The relevant artisan

command will look like this:

//code 12.13

$ php artisan make:resource Article --collection

$ php artisan make:resource ArticleCollection

Later in this chapter I will discuss collections and show how they work.

So, you have created a resource called Article. You can find it in the app/Http/

Resources directory of your application. Resources extend the Illuminate\Http\

Resources\Json\JsonResource class.

//code 12.14

//app/Http/Resources/Article.php

<?php

namespace App\Http\Resources;

Chapter 12 Working with APIs

372

use Illuminate\Http\Resources\Json\JsonResource;

class Article extends JsonResource

{

 /**
 * Transform the resource into an array.

 *
 * @param \Illuminate\Http\Request $request

 * @return array

 */

 public function toArray($request)

 {

 return parent::toArray($request);

 }

}

As you can see in the previous code, every resource class defines a toArray method,

which returns the array of attributes that should be converted to JSON when sending the

response. Laravel takes care of that in the background.

You are not ready yet. You need to register your API routes in the routes/api.php

file, like this:

//code 12.15

//routes/api.php

<?php

use Illuminate\Http\Request;

/*
|--

| API Routes

|--

|

| Here is where you can register API routes for your application. These

| routes are loaded by the RouteServiceProvider within a group which

| is assigned the "api" middleware group. Enjoy building your API!

|

*/

Chapter 12 Working with APIs

373

Route::middleware('auth:api')->get('/user', function (Request $request) {

 return $request->user();

});

//list articles

Route::get('articles', 'ArticleController@index');

//list single article

Route::get('article/{id}', 'ArticleController@show');

//create new article

Route::post('article', 'ArticleController@store');

//update articles

Route::put('article', 'ArticleController@store');

//delete articles

Route::delete('article/{id}', 'ArticleController@destroy');

You see the URI, method, and action parts of your routes. If you want a full list, you

can issue this artisan command in your terminal:

$ php artisan route:list

Now you can see the full route list (Figure 12-1).

Figure 12-1.  The API route list in your terminal

Chapter 12 Working with APIs

374

After starting the local server, you can open Postman to get the response (Figure 12-2).

Postman is a tool that can send requests to an API and show you the response. In other

words, it is a fancy version of cURL.

Figure 12-2.  The JSON response of the Article API in Postman

You can get the same output in your regular web browser also. The URL is http://

localhost:8000/api/articles. See Figure 12-3.

Chapter 12 Working with APIs

375

Let’s take a look at the ArticleController index method, as shown here:

//code 12.16

//app/Http/Controllers/ArticleController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Article;

use App\Http\Resources\Article as ArticleResource;

class ArticleController extends Controller

{

 /**
 * Display a listing of the resource.

 *
 * @return \Illuminate\Http\Response

 */

Figure 12-3.  The same JSON response in reply to a GET request in a normal
browser

Chapter 12 Working with APIs

376

 public function index()

 {

 //get articles

 $articles = Article::paginate(15);

 //return collection of articles as resource

 return ArticleResource::collection($articles);

 }

 /**
 * Display the specified resource.

 *
 * @param int $id

 * @return \Illuminate\Http\Response

 */

 public function show($id)

 {

 //get article

 $article = Article::findOrFail($id);

 //returning single article as a resource

 return new ArticleResource($article);

 }

}

For demonstration purposes, I have shown only two methods here: index and show.

Since I have used the paginate() method, each page shows you 15 articles. Figure 12-4

shows the second page.

Chapter 12 Working with APIs

377

The URL is http://localhost:8000/api/articles?page=2.

Now you may not want to give your application user every output. You may want to

omit created_at and updated_at. Laravel allows you to customize the JSON output. In

that case, you can return the selected records like this:

//code 12.17

//app/Http/Resources/Article.php

<?php

namespace App\Http\Resources;

use Illuminate\Http\Resources\Json\JsonResource;

class Article extends JsonResource

{

 /**
 * Transform the resource into an array.

 *
 * @param \Illuminate\Http\Request $request

 * @return array

 */

Figure 12-4.  The view of page 2 of the JSON response

Chapter 12 Working with APIs

378

 public function toArray($request)

 {

 return [

 'id' => $this->id,

 'title' => $this->title,

 'body' => $this->body

];

 }

}

So, you are returning only id, title, and body and giving a customized look

(Figure 12-5).

Figure 12-5.  The customized JSON response

You can use the show method to have one article display at a time, as shown in

Figure 12-6.

Chapter 12 Working with APIs

379

Notice that for the customized version, you access the model properties directly from

the $this variable.

How does this work?

This is because a resource class is able to automatically proxy properties and

methods, and it accesses the underlying model. Once the resource is defined, it may be

returned from a route or controller, as in the ArticleController show method in the

example.

//code 12.18

public function show($id)

 {

 //get article

 $article = Article::findOrFail($id);

 //returning single article as a resource

 return new ArticleResource($article);

 }

Figure 12-6.  JSON response of article number 9

Chapter 12 Working with APIs

380

Here you are returning a single article as a resource. Suppose, in case of the User

resource, you return a new UserResource like this:

//code 12.19

use App\User;

 use App\Http\Resources\User as UserResource;

 Route::get('/user', function () {

 return new UserResource(User::find(1));

 });

In the customized version, you can add some more elements with the help of the

with method in app/Http/Resources/Article.php.

The changed code looks like this:

//code 12.20

//app/Http/Resources/Article.php

<?php

namespace App\Http\Resources;

use Illuminate\Http\Resources\Json\JsonResource;

class Article extends JsonResource

{

 /**
 * Transform the resource into an array.

 *
 * @param \Illuminate\Http\Request $request

 * @return array

 */

 public function toArray($request)

 {

 // return parent::toArray($request);

 return [

 'id' => $this->id,

 'title' => $this->title,

 'body' => $this->body

Chapter 12 Working with APIs

381

];

 }

 public function with($request) {

 return [

 'version' => '1.0.0',

 'author_url' => url('https://sanjib.site')

];

 }

}

The JSON response changes to the screen shown in Figure 12-7 in Postman.

Figure 12-7.  You have added the version and author URL link, shown in
Postman

Next, you will see how API collection works. Let’s first create a UserCollection class.

//code 12.21

$ php artisan make:resource UserCollection

Resource collection created successfully.

Chapter 12 Working with APIs

382

I have added a few dummy users to the application. In the resource UserCollection,

when you have this line of code:

//code 12.22

//app/Http/Resources/UserCollection.php

public function toArray($request)

 {

 return parent::toArray($request);

 }

you get this JSON response output:

//output of code 12.22

data

0

id 1

name "sanjib"

email "sanjib12sinha@gmail.com"

email_verified_at null

created_at "2019-03-30 00:16:22"

updated_at "2019-03-30 00:16:22"

1

id 2

name "ss"

email "s@s.com"

email_verified_at null

created_at "2019-03-31 05:02:57"

updated_at "2019-03-31 05:02:57"

2

id 3

name "admin"

email "admin@la.fr"

email_verified_at null

created_at "2019-03-31 05:03:11"

updated_at "2019-03-31 05:03:11"

Chapter 12 Working with APIs

383

3

id 4

name "hagudu"

email "hagudu@hagudu.com"

email_verified_at null

created_at "2019-03-31 05:03:24"

updated_at "2019-03-31 05:03:24"

You can take a look at the result in Figure 12-8.

Figure 12-8.  The usual JSON output of UserCollection

Once the resource collection class has been generated, you can easily define any

metadata that should be included with the response. To do that, you need to change the

code of UserCollection in this way:

//code 12.23

//app/Http/Resources/UserCollection.php

 public function toArray($request)

 {

 return [

 'data' => $this->collection,

Chapter 12 Working with APIs

384

 'links' => [

 'author_url' => 'https://sanjib.site',

],

];

 }

Now you have added extra metadata, and in the output it has been included at the

bottom of your JSON response.

//output of code 12.23

3

id 4

name "hagudu"

email "hagudu@hagudu.com"

email_verified_at null

created_at "2019-03-31 05:03:24"

updated_at "2019-03-31 05:03:24"

links

author_url "https://sanjib.site"

//the code is shortened for brevity

In your browser display, it also has been included at the bottom (Figure 12-9).

Chapter 12 Working with APIs

385

To get all those new UserCollection JSON responses, you can register your route in

this way:

//code 12.24

//routes/api.php

use App\User;

use App\Http\Resources\UserCollection;

Route::get('/users', function () {

 return new UserCollection(User::all());

});

�Working with Laravel Passport
You now have authentication in place. As you can see, performing authentication via

traditional login forms can easily be done in Laravel.

But API authentication is different. APIs use tokens to authenticate users and do not

maintain the session state between requests. Laravel Passport is something that makes

developers’ lives much easier because it handles the API authentication.

Figure 12-9.  The extra metadata that you have added in the collection

Chapter 12 Working with APIs

386

In fact, it does not take much time to implement API authentication when using

Laravel Passport. You will see that in a minute. Moreover, you will learn how the OAuth2

server implementation is done, which Laravel Passport also supports.

If you are not familiar with OAuth2 server implementation, then this will be a small

introduction for you. OAuth2 is an open standard for access delegation. Many web sites

give you a chance to log in via the GitHub, Google, or Facebook APIs. In such cases,

GitHub, Amazon, Google, Microsoft, Twitter, and Facebook give permission to those web

sites to access their login information without giving them the passwords. This is known

as secured delegated access. These companies authorize the third-party access to their

server resources but never share their credentials.

You are going to do the same thing with a local Laravel application and a remote site

called https://sanjib.site for demonstration purposes.

To start with, install Passport via the Composer package manager, as shown here:

//code 12.25

$ composer require laravel/passport

 - Installing psr/http-message (1.0.1): Downloading (100%)

 - Installing psr/http-factory (1.0.0): Downloading (100%)

 - Installing zendframework/zend-diactoros (2.1.1): Downloading (100%)

 - Installing symfony/psr-http-message-bridge (v1.2.0): Downloading (100%)

 - Installing phpseclib/phpseclib (2.0.15): Downloading (100%)

 - Installing defuse/php-encryption (v2.2.1): Downloading (100%)

 - Installing lcobucci/jwt (3.2.5): Downloading (100%)

 - Installing league/event (2.2.0): Downloading (100%)

 - Installing league/oauth2-server (7.3.3): Downloading (100%)

 - Installing ralouphie/getallheaders (2.0.5): Downloading (100%)

 - Installing guzzlehttp/psr7 (1.5.2): Downloading (100%)

 - Installing guzzlehttp/promises (v1.3.1): Downloading (100%)

 - Installing guzzlehttp/guzzle (6.3.3): Downloading (100%)

 - Installing firebase/php-jwt (v5.0.0): Downloading (100%)

 - Installing laravel/passport (v7.2.2): Downloading (100%)

Chapter 12 Working with APIs

https://sanjib.site

387

Next, migrate because the Passport service provider registers its own database

migration directory with the framework.

//code 12.26

$ php artisan migrate

Migrating: 2016_06_01_000001_create_oauth_auth_codes_table

Migrated: 2016_06_01_000001_create_oauth_auth_codes_table

Migrating: 2016_06_01_000002_create_oauth_access_tokens_table

Migrated: 2016_06_01_000002_create_oauth_access_tokens_table

Migrating: 2016_06_01_000003_create_oauth_refresh_tokens_table

Migrated: 2016_06_01_000003_create_oauth_refresh_tokens_table

Migrating: 2016_06_01_000004_create_oauth_clients_table

Migrated: 2016_06_01_000004_create_oauth_clients_table

Migrating: 2016_06_01_000005_create_oauth_personal_access_clients_table

Migrated: 2016_06_01_000005_create_oauth_personal_access_clients_table

Now you need to create the encryption keys needed to generate secure access

tokens, as shown here:

//code 12.27

$ php artisan passport:install

Encryption keys generated successfully.

Personal access client created successfully.

Client ID: 1

Client secret: CqTb7j2ABO1qAMM1OHInXodrpTtVkPxFuaR9UZs1

Password grant client created successfully.

Client ID: 2

Client secret: LLxn4BP4Px4q4zJlt4u9JXGe3y4ghUIGQ4TqOv49

As you can see in the previous code, two records, the client ID and the client secret,

have been generated (Figure 12-10).

Chapter 12 Working with APIs

388

At this point, you need to check one more thing: whether you have a recent version of

Node.js. If not, you need to install it first by running this command:

$ npm install

It will take some time for the Node modules to be installed. You can take a look at

your terminal while they are being installed (Figure 12-11).

Figure 12-10.  oauth_clients in your local database

Chapter 12 Working with APIs

389

Now that you have the Node modules in place, you can tweak some code in your

App\User model. You need to add the Laravel\Passport\HasApiTokens trait in the User

model. This will be required for your API authentication. Replace your User model with

this code:

//code 12.28

//app/User.php

<?php

namespace App;

use Laravel\Passport\HasApiTokens;

use Illuminate\Notifications\Notifiable;

use Illuminate\Contracts\Auth\MustVerifyEmail;

use Illuminate\Foundation\Auth\User as Authenticatable;

class User extends Authenticatable

{

 use HasApiTokens, Notifiable;

Figure 12-11.  The npm install command is running

Chapter 12 Working with APIs

390

 /**
 * The attributes that are mass assignable.

 *
 * @var array

 */

 protected $fillable = [

 'name', 'email', 'password',

];

 /**
 * The attributes that should be hidden for arrays.

 *
 * @var array

 */

 protected $hidden = [

 'password', 'remember_token',

];

 /**
 * The attributes that should be cast to native types.

 *
 * @var array

 */

 protected $casts = [

 'email_verified_at' => 'datetime',

];

}

Next, you will call the Passport::routes method within the boot method of your

AuthServiceProvider. This method will register the routes necessary to issue access tokens

and revoke access tokens, clients, and personal access tokens. Replace your old code with this:

//code 12.29

//app/Providers/ AuthServiceProvider.php

<?php

namespace App\Providers;

use Laravel\Passport\Passport;

Chapter 12 Working with APIs

391

use Illuminate\Support\Facades\Gate;

use Illuminate\Foundation\Support\Providers\AuthServiceProvider as

ServiceProvider;

class AuthServiceProvider extends ServiceProvider

{

 /**
 * The policy mappings for the application.

 *
 * @var array

 */

 protected $policies = [

 // 'App\Model' => 'App\Policies\ModelPolicy',

];

 /**
 * Register any authentication / authorization services.

 *
 * @return void

 */

 public function boot()

 {

 $this->registerPolicies();

 Passport::routes();

 }

}

Finally, in your config/auth.php configuration file, you should set the driver option

of the api authentication guard to passport. This will instruct your application to use

Passport’s TokenGuard when authenticating incoming API requests.

//code 12.30

//config/auth.php

'guards' => [

 'web' => [

 'driver' => 'session',

 'provider' => 'users',

],

Chapter 12 Working with APIs

392

 'api' => [

 'driver' => 'passport',

 'provider' => 'users',

],

],

Now the time has come to use Vue.js for your application API authentication.

Specifically, you are going to create some Vue components. To do that, you have to

publish the Passport Vue components, as shown here:

//code 12.31

$ php artisan vendor:publish –tag=passport-components

Next, add these lines inside your resources/js/app.js file:

//code 12.32

//resources/js/app.js

Vue.component(

 'passport-clients',

 require('./components/passport/Clients.vue').default

);

Vue.component(

 'passport-authorized-clients',

 require('./components/passport/AuthorizedClients.vue').default

);

Vue.component(

 'passport-personal-access-tokens',

 require('./components/passport/PersonalAccessTokens.vue').default

);

Now that you have your Vue components in the proper place, you can get the

template to create the new OAuth clients.

Since you have a traditional login system already in place for your application, you

can get that template in your home.blade.php file.

//code 12.33

//resources/views/home.blade.php

@extends('layouts.app')

Chapter 12 Working with APIs

393

@section('content')

<div class="container">

 <div class="row justify-content-center">

 <div class="col-md-8">

 <div class="card">

 <div class="card-header">Dashboard</div>

 <div class="card-body">

 @if (session('status'))

 <div class="alert alert-success" role="alert">

 {{ session('status') }}

 </div>

 @endif

 <passport-clients></passport-clients>

<passport-authorized-clients></passport-authorized-clients>

<passport-personal-access-tokens></passport-personal-access-tokens>

 </div>

 </div>

 </div>

 </div>

</div>

@endsection

Now you are ready to have your users create their own OAuth API clients. Once a

user is signed in, they will be greeted by the new look shown in Figure 12-12.

Chapter 12 Working with APIs

394

Now the user is going to create the first OAuth client (Figure 12-13).

Figure 12-12.  The user has not created any client yet

Figure 12-13.  The user is going to create the new OAuth client

Chapter 12 Working with APIs

395

After the first OAuth client has been created, it will immediately be reflected on the

page (Figure 12-14).

Figure 12-14.  The first OAuth client has been created

Now you have come to the final stage, which is API authentication.

�API Authentication
You have seen how a user has added an OAuth client on their own home page. But a user

with administrative privileges can add many clients for other users. Suppose you have a

user who has an ID of 2.

In that case, the administrator can issue the following commands in the terminal to

create the OAuth client for that user:

//code 12.34

$ php artisan passport:client

 Which user ID should the client be assigned to?:

 > 2

Chapter 12 Working with APIs

396

 What should we name the client?:

 > sanjib

 Where should we redirect the request after authorization? [http://

localhost/auth/callback]:

 >

New client created successfully.

Client ID: 4

Client secret: E02repG4eeeklfpaeX8i6YdtDi2tYQS6aYuKIO8I

Immediately after this addition, the user with ID 2 will see the OAuth client on their

home.blade.php page (Figure 12-15).

Figure 12-15.  A new OAuth client has been added by the administrator

Now what happens if a remote site (here https://sanjib.site) wants your

application to authorize user 5?

You will be able to authorize it without giving your login credentials.

Chapter 12 Working with APIs

https://sanjib.site

397

To do that, in the routes/web.php file of https://sanjib.site, there is this code:

//code 12.35

Route::get('/redirect', function () {

 $query = http_build_query([

 'client_id' => '5',

 'redirect_uri' => 'https://sanjib.site/callback',

 'response_type' => 'code',

 'scope' => ",

]);

 return redirect('http://localhost:8000/oauth/authorize?'.$query);

});

This will redirect the page to the login screen of http://localhost:8000/login, as

shown in Figure 12-16.

Figure 12-16.  Redirected to the login screen of http://localhost:8000/login

Remember, the remote site (https://sanjib.site) asks for your permission to allow

the user with ID 5. This happens because this route has already been registered in the

web.php file of https://sanjib.site.

Chapter 12 Working with APIs

https://sanjib.site
https://sanjib.site
https://sanjib.site

398

For that reason, only the fifth user can view this login page. If some other users want

to log in, an error will be thrown.

However, once the fifth user logs in, they will be greeted with the page in Figure 12-17.

Figure 12-17.  sanjib.site is requesting permission to access the account of the user
with an ID of 5

Now, if you look at the URL in the browser, you will see something similar to this:

//code 12.36

http://localhost:8000/oauth/authorize?client_id=5&redirect_

uri=https%3A%2F%2Fsanjib.site%2Fcallback&response_type=code&scope=

Laravel APIs, Passport, and API authentication features are great additions to easily

manage the difficulties of authenticating the OAuth client.

I hope you have an idea of how you could use these great features in your

application.

Chapter 12 Working with APIs

399
© Sanjib Sinha 2019
S. Sinha, Beginning Laravel, https://doi.org/10.1007/978-1-4842-4991-8

�APPENDIX

More New Features
in Laravel 5.8
Laravel 5.8 has many improvements and updates. Some of them seem to be quite

interesting and will impact the course of future development. In this appendix, you’ll

take a quick look at some of them.

One of the most interesting changes is the “dump server” feature. It was first

incorporated in Laravel 5.7 and then extended in Laravel 5.8.

�What Is the Dump Server Feature?
The dump server feature allows you to start a “dump server” to collect dump information

about the internal processes.

Let’s start a new version of Laravel 5.8 installed locally. Then open the composer.

json file and take a look at this part:

 "require-dev": {

 "beyondcode/laravel-dump-server": "^1.0",

 "filp/whoops": "^2.0",

 "fzaninotto/faker": "^1.4",

 "mockery/mockery": "^1.0",

 "nunomaduro/collision": "^2.0",

 "phpunit/phpunit": "^7.5"

 },

You’ll see beyondcode/laravel-dump-server": "^1.0" already in place.

https://doi.org/10.1007/978-1-4842-4991-8

400

Next, open the routes/web.php file and add this line:

Route::get('/', function () {

 dump("Hello Laravel 5.8");

 return view('welcome');

});

This gives you the output shown in Figure A-1.

Next, in the terminal, so ahead and pass this command:

$ php artisan dump-server

It gives us this output:

ss@ss-H81M-S1:~$ cd code/laravel58/

ss@ss-H81M-S1:~/code/laravel58$ php artisan dump-server

Figure A-1.  Dump server output in the browser

Appendix More New Features in Laravel 5.8

401

Laravel Var Dump Server

=======================

 [OK] Server listening on tcp://127.0.0.1:9912

 // Quit the server with CONTROL-C.

GET http://localhost:8000/

 ------------ ---------------------------------

 date Wed, 03 Apr 2019 00:33:20 +0000

 controller "Closure"

 source web.php on line 16

 file routes/web.php

 ------------ ---------------------------------

"Hello Laravel 5.8"

Figure A-2 shows the output in the terminal. It is interesting to take note that in the

browser, at the same time, the page just vanishes.

Figure A-2.  Dump server output in the terminal

Appendix More New Features in Laravel 5.8

402

Let’s dump all the users the same way. Remember, I have seeded the users table

with fake data, and currently there are 21 users in the database.

Go ahead and change your routes/web.php file in this way:

use App\User;

Route::get('/', function () {

 $users = User::all();

 dump($users);

 return view('welcome');

});

Open your browser, and you will see something like Figure A-3.

However, you can manage this output by running the dump-server artisan

command in the terminal. You will then get the clean output in the browser (Figure A-4).

Figure A-3.  The browser is filled with the dumped user data

Appendix More New Features in Laravel 5.8

403

Instead, all the user data is being displayed in the terminal, as shown in Figure A-5.

Figure A-4.  Clear browser without dumped user data

Appendix More New Features in Laravel 5.8

404

Now change the routes/web.php code to the following and run the dump-server

command again:

use App\User;

Route::get('/', function () {

 $users = User::all()->toArray();

 dump($users);

 return view('welcome');

});

Figure A-5.  Dumped user data in the terminal

Appendix More New Features in Laravel 5.8

405

The output is dumped in the terminal like in Figure A-6.

ss@ss-H81M-S1:~/code/laravel58$ php artisan dump-server

Laravel Var Dump Server

=======================

 [OK] Server listening on tcp://127.0.0.1:9912

 // Quit the server with CONTROL-C.

GET http://localhost:8000/

 ------------ ---------------------------------

 date Wed, 03 Apr 2019 00:56:02 +0000

 controller "Closure"

 source web.php on line 19

 file routes/web.php

 ------------ ---------------------------------

array:22 [

 0 => array:10 [

 "id" => 1

 "country_id" => 5

 "role_id" => 4

 "name" => "Sarina Becker MD"

 "email" => "gage78@example.org"

 "email_verified_at" => null

 "created_at" => "2018-11-17 03:46:58"

 "updated_at" => "2018-11-28 03:15:55"

 "admin" => 0

 "mod" => 0

]

 1 => array:10 [

 "id" => 2

 "country_id" => 7

 "role_id" => null

 "name" => "Ariel Hand"

 "email" => "mallie.treutel@example.org"

 "email_verified_at" => null

 "created_at" => "2018-11-17 03:46:59"

Appendix More New Features in Laravel 5.8

406

 "updated_at" => "2018-11-17 03:46:59"

 "admin" => 0

 "mod" => 0

]

 2 => array:10 [

 "id" => 3

 "country_id" => null

 "role_id" => null

 "name" => "Carissa Raynor"

 "email" => "kuhic.eliezer@example.com"

 "email_verified_at" => null

 "created_at" => "2018-11-17 03:46:59"

 "updated_at" => "2018-11-17 03:46:59"

 "admin" => 0

 "mod" => 0

]

 3 => array:10 [

 "id" => 4

 "country_id" => null

 "role_id" => null

 "name" => "Jude Johnston"

 "email" => "murazik.devante@example.com"

 "email_verified_at" => null

 "created_at" => "2018-11-17 03:46:59"

 "updated_at" => "2018-11-17 03:46:59"

 "admin" => 0

 "mod" => 0

]

 4 => array:10 [

 "id" => 5

 "country_id" => null

 "role_id" => null

 "name" => "Sarai Beier"

 "email" => "rowe.lamont@example.net"

 "email_verified_at" => null

 "created_at" => "2018-11-17 03:46:59"

Appendix More New Features in Laravel 5.8

407

 "updated_at" => "2018-11-17 03:46:59"

 "admin" => 0

 "mod" => 0

]

 5 => array:10 [

 "id" => 6

 "country_id" => null

 "role_id" => null

 "name" => "Ms. Freda Kemmer"

 "email" => "brock56@example.org"

 "email_verified_at" => null

 "created_at" => "2018-11-17 03:46:59"

 "updated_at" => "2018-11-17 03:46:59"

 "admin" => 0

 "mod" => 0

]

I have omitted some output here for brevity.

�Improved artisan Command
Laravel 5.8 now has improved artisan commands. Before Laravel 5.8, you could not run

two servers in parallel on different ports. For example, suppose you are running your

application in Laravel 5.7 on port 8000. At the same time, you want to run your Laravel 5.8

application on another port.

With previous versions, Laravel ran the servers on one port, 8000. Laravel 5.8 has the

ability to use another port.

Let’s see an example. I have a news application in my code/news directory. It runs on

Laravel 5.7. I start it, and along with it, I start a new Laravel 5.8 application in the code/

laravel58 directory.

The first artisan serve command has normal output like this:

//output of Laravel 5.7 php artisan serve command

cdss@ss-H81M-S1:~$ cd code/news/

ss@ss-H81M-S1:~/code/news$ php artisan serve

Laravel development server started: <http://127.0.0.1:8000>

Appendix More New Features in Laravel 5.8

408

[Wed Apr 3 08:22:26 2019] 127.0.0.1:40984 [200]: �/css/webmag/css/

bootstrap.min.css

[Wed Apr 3 08:22:26 2019] 127.0.0.1:40986 [200]: �/css/webmag/css/font-

awesome.min.css

[Wed Apr 3 08:22:26 2019] 127.0.0.1:40988 [200]: /css/webmag/css/style.css

[Wed Apr 3 08:22:26 2019] 127.0.0.1:40990 [200]: �/css/webmag/js/jquery.

min.js

[Wed Apr 3 08:22:26 2019] 127.0.0.1:40992 [200]: �/css/webmag/js/bootstrap.

min.js

[Wed Apr 3 08:22:26 2019] 127.0.0.1:40994 [200]: /css/webmag/js/main.js

[Wed Apr 3 08:22:26 2019] 127.0.0.1:40996 [200]: /css/webmag/img/logo.png

[Wed Apr 3 08:22:27 2019] 127.0.0.1:41004 [200]: �/images/entertainment/

rowan-chestnut-175871-

unsplash.jpg

[Wed Apr 3 08:22:27 2019] 127.0.0.1:41006 [200]: �/css/webmag/img/

widget-1.jpg

(Code is incomplete for brevity)

Next, I run the new Laravel 5.8 application in code/laravel58. Take a look at the

output in the terminal to see the difference, as shown here:

//output of Laravel 5.8 php artisan serve command

ss@ss-H81M-S1:~$ cd code/laravel58

ss@ss-H81M-S1:~/code/laravel58$ php artisan serve

Laravel development server started: <http://127.0.0.1:8000>

[Wed Apr 3 08:23:31 2019] Failed to listen on 127.0.0.1:8000 (reason:

Address already in use)

Laravel development server started: <http://127.0.0.1:8001>

[Wed Apr 3 08:23:49 2019] 127.0.0.1:44394 [200]: /favicon.ico

[Wed Apr 3 08:24:40 2019] 127.0.0.1:44408 [200]: /favicon.ico

In the previous code, these two lines are important:

[Wed Apr 3 08:23:31 2019] Failed to listen on 127.0.0.1:8000 (reason:

Address already in use)

Laravel development server started: <http://127.0.0.1:8001>

Appendix More New Features in Laravel 5.8

409

Since port 8000 is already in use, Laravel 5.8 is smart enough to start another server

on port 8001. According to the new features of Laravel 5.8, it will scan up to port 8002 and

try to find a port that is free, as shown in Figure A-6.

This is a great advancement because now locally you can run multiple applications

at the same time.

There is another improvement in the form of Artisan::call. You use the

Artisan::call method when you want to call the method programmatically. In the past,

you could pass some options to the command this way:

 Artisan::call('migrate:install', ['database' => 'laravelpractice']);

But with Laravel 5.8, this has changed drastically. Now Laravel imports the console

environment and uses flags just like artisan commands in the terminal.

 Artisan::call('migrate:install –database=laravelpractice');

Figure A-6.  Along with two terminals, two browsers running in parallel on two
ports

Appendix More New Features in Laravel 5.8

410

�A Few More Additions
The following are a few other additions.

�Renaming the Mail Format Folder
You learned about e-mail verification in Chapter 10. The e-mail validation methods

have been improved a lot. This is especially true when you have mailable classes in

your project, as you saw in Chapter 12. I usually customize the components with the

vendor:publish artisan command.

In earlier versions, the created directory would be named /resources/views/

vendor/mail/markdown; it is now named /resources/views/vendor/mail/text. The

logic behind this is simple but meaningful. Both folders can contain Markdown code for

making good-looking, responsive HTML templates with plain-text fallbacks. That is why

the markdown folder has been renamed to text.

�Changes to .env
A major change has taken place in the .env file. Laravel 5.8 uses the relatively new

DOTENV 3.0 to manage the .env file. It will be an extremely important change in Laravel

application development in the future.

Why? Let me explain. Until now, Laravel’s .env does not support multiple lines and

whitespace. The new features of DOTENV 3.0 support multiline strings. So, inside the

.env file, you can write like this:

DEVELOPMENT_APP_KEY="multiline

strings"

Only the first line would have been parsed before. Now the whole string will be

parsed. That means when implementing security in the future, you can now ask for

multiline API keys.

Appendix More New Features in Laravel 5.8

411

�Changing the Look of Error Pages
There has been a big change in how error pages look. Figure A-7 shows an error page in a

Laravel 5.7 application.

Some say that the new look is more modern, although you may disagree (Figure A-8).

Figure A-7.  Error page in Laravel 5.7

Appendix More New Features in Laravel 5.8

412

�Improving Array and String Helper Functions
Array and string helper functions are going to be improved soon. The array_* and str_*

global helpers have been deprecated already and will be removed in Laravel 5.9. There

are Arr::* and Str::* facades that will be used instead (although there are packages

that you will be able to use to maintain functionality if you don’t want to change the

existing code).

�Changes in Caching
In the previous versions, caching was set in minutes, as shown here:

 // Laravel 5.7 - Store item for 10 minutes...

Cache::put('foo', 'bar', 10);

Figure A-8.  Error page in Laravel 5.8

Appendix More New Features in Laravel 5.8

413

Laravel 5.8 uses seconds, so now you have to multiply 10 by 60 and change the

previous code to this:

// Laravel 5.8 - Store item for 10 minutes...

Cache::put('foo', 'bar', 600);

There are some other minor improvements in Laravel 5.8. Please consult the

documentation for the full list.

�Where to Go from Here
You have learned about many important concepts in Laravel 5.8 in this book. I have used

several different projects to explain Laravel concepts. Although you did not develop a

complete project from beginning to end, you can find the full code of all the projects

discussed in the code repository. Please download the code files for this book while you

read and practice.

I have used the company/project/task management application to explain all the

model relations along the authorization, authentication, and middleware.

Since Laravel has great support for the JavaScript framework Vue.js, I suggest you

learn at least one JavaScript framework to facilitate more accomplishments in the future.

Learning a PHP framework like Laravel opens up many doors. I hope you will be able

to use this knowledge base to move forward and develop some awesome applications.

Appendix More New Features in Laravel 5.8

415
© Sanjib Sinha 2019
S. Sinha, Beginning Laravel, https://doi.org/10.1007/978-1-4842-4991-8

Index

A
AboutTheUser event, 353
Abstraction, 294–296
API authentication

browser URL, 398
login credentials, 396, 397
login screen, 397
OAuth client, 395, 396

API creation
Article API, 368, 369
ArticleFactory, 369, 370
ArticlesTableSeeder, 369, 370
--collection flag, 371
GET request, 374, 375
JSON response, 377, 378
metadata, 384, 385
Postman, 374, 381
route list, 373
routes register, 372
UserCollection class, 381–383
UserResource, 380

app/Repositories folder, 67
AppServiceProvider, 365
ArticleController index method, 375–376
ArticleController.php

index() method, 106–109
main() method, 109–111

ArticleController show method, 352,
378, 379

ArticleController store() method, 172

ArticleController update() method,
170, 171

Article management application, 108, 109
Artisan::call method, 409
artisan commands, 13, 14, 229, 361,

407–409
Authentication

articles, 239
blog link, 238
HomeController, 237
middleware mechanism, 228

administrator dashboard, 233, 234
administrator logs in, 233
Blade template page, 231, 232
CheckRole, 229
handle() method, 229
moderator/editor, 231

public sections, 237
reviews page, 240, 241
services, 235, 236

Authentication methods
in Company/Project/Task

Management application
add resource, 214–216
CompanyController.php file,

217–219, 221
Company model, 222–227
middleware, 216
role-based authentication, 216, 217

Auth facade, 273, 298

https://doi.org/10.1007/978-1-4842-4991-8

416

Authorization
blade templates

administrator logs in, 266, 267
create code, 273, 274
delete() method, 268
edit.blade.php page, 275, 276
edit companies page, 278
index method, 272
static methods, 273
store() method, 275
update() method, 277
view pages, 268–271

handle method, 259
home.blade.page code, 261–266
HomeController, 256
policies working

app/Policies directory, 288
AuthServiceProvider, 290, 292
functionalities, 285, 286
mod policies, 289, 290

redirectTo method, 258
services, 235, 236
using Gates and Policies

administrator page, 279, 280
navigation bar, 283–285

B
back() helper method, 167, 168
Blade template

app.blade.php file, 69
authentication, 70
automatic caching, 68
control structures, 71
foreach loop, 72, 73
PHP isset function, 72
resources/views/tasks/index.blade.

php file, 68
security, 70

C
CheckRole, 229
Composer installation

global, 12
laravel

global, 13, 14
local, 14, 16

local, 11
Contracts vs. facades, 297

attempt() method, 300
Auth facade, 298
CRUD operations, 298
SOLID design principle, 300
store() method, 300

Controller class, route, 48–51
database/migration folder, 57, 58
Model class, 58, 59
TaskController.php file, 52–56, 60–61
task resource, 61, 62
task model, 56

Create-read-update-delete (CRUD)
approach, 43, 207

CSRF token validation, 2

D
Data access object (DAO), 10
Database-driven application, 37, 81, 83
Database handling

artisan tinker command, 207
CRUD operation, 209
destroy() method, 210
eloquent models, 208
Listtodo, 208
save() command, 208

Database integration, 104
delete() method, 268
Dependency injection (DI), 3, 65, 132, 301

INDEX

417

Dependency inversion principle, 295
Dump server

composer.json file, 399
output, 400, 401, 405–407
routes/web.php file, 402
user data, 402–404

dump-server command, 402, 404

E
edit() method, 173, 268
Eloquent model, 75, 79, 109, 114
Eloquent ORM

app directory, 114
database migration, 115

Eloquent relation
has-many-through

article model, 141, 142
countries table, 137
country model, 136, 137
resources/views/articles/show.

blade.php, 139
show() method, 139
user model, 138

many-to-many, 132
article_id/tag_id, 134
article model, 133
belongsToMany method, 134
database/seeds/DatabaseSeeder.

php file, 135
Faker object, 135
show() method, 133

one-to-many
articles.blade.php, 126
articles method, 122–125
routes/web.php code, 121
User model, 127

one-to-one
article model, 116, 117
content management

application, 120
hasOne('AppArticle') method, 117
welcome.blade.php code,

118, 119
Events, 341, 343
Events and broadcasting, set up

autogenerate events, 366
create events (see Events creation)
event classes, 343
receiving messages (see Messages,

receive)
software design pattern, 342

Events creation
AboutTheUser, 353
controller methods, 343–346
CreatemessageController, 346
EventServiceProvider, 354, 355
listeners, 354, 355
listen property, 357
message model, 346, 347
messages, create, 350, 352
messages, display, 351
resourceful controller, 343
routes register, 351
show template, 349
SOLID, 357
user model, 347, 348

F
Facades, 297
factory() methods, 94
Faker object, 92, 94, 96, 97
Forge server, 18

Index

418

Form inputs, traditional way
action part, 200–202
article.store, 195
code, article.create Blade page, 190,

192, 194
create content, 189, 190
edit part, article.edit Blade page,

196–200
Form::model method, 187
Form request validation

custom message, 204
form request class, 202
rules() method, 203
unauthorized page, 204, 205

G
getRouteKeyName method, 79

H
handle() method, 229, 259
hasMany relationship, 126
Homestead

configuration, 27, 28
installation, 25–27
and MySQL workbench, 34, 35
and shared folders, 28–31
vagrant box

installation, 19–22, 24
launching, 31–34

virtualbox installation, 19–22, 24
htmlspecialchars function, 70

I, J, K
index() method, 105, 106, 245, 268
interface keyword, 296
Interface segregation principle, 295

L
LAMP server, 13
LAMP technology, 9, 19
laraeventandlisteners, 352
Laravel, 292

composer dependency manager, 3
DI, 3–5
features, 3
flexibility, 1
framework components, 6
HTTP layers, 2
IoC container, 4, 5
MVC pattern (see Model-View-

Controller (MVC))
PHP framework, 1
route and middleware request, 6

laravelcollective/html package, 181
Laravel Echo, 341
Laravel 5.8

caching, 412, 413
.env file, 410
error pages, 411, 412
helper functions, 412
mail format, 410

Laravel model, migrations
AppProfile model, 87
code functionality, 85
comments table, 86, 92
config/database.php file, 81, 83
database/migrations folder, 85
eloquent ORM, 83
password-resets, 84
profile model, 84, 86
role model, 90, 91
tags and articles model, 87–89
user model, 86, 91

Laravelmodelrelations, 83, 84

INDEX

419

Laravel Passport
AuthServiceProvider, 390, 391
composer package manager, 386
encryption keys, 387
home.blade.php file, 392, 393
npm install command, 388, 389
OAuth client, 394, 395
oauth_clients, 387, 388
secured delegated access, 386
service provider registers, 387
TokenGuard, 391
User model, 389, 390
Vue components, 392

Laravel project, creation, 37–39
Laravel service container

and classes
app() function, 312
bind method, 308
bind interface, 309
chained instances, 306, 308
make() function, 312
method chaining, 308

DBUserRepository.php, 302
defined, 301
method injection, 303–305
raw data output, 304, 305
UserController, 303
UserRepository, 305

Liskov Substitution principle, 295
Live notifications, 342

M
Mail template

local development
change route, 321, 322
database/migrations/user

table, 316

email verification, 313, 314
MustVerifyEmail, 315
nullable timestamp, 317, 318
user model, 314
use tinker, 319, 320

sending e-mails
API-based services, 324
HomeController, 329, 330
Mailtrap, 324, 325, 327, 332–334
SendMailable class, 328, 329
user verification, 331

send notifications
Mailtrap, 334
NewuserRegistered.php file, 335,

336, 338
Mailtrap, 324, 327
make:controller–resource

command, 268
make:resource Artisan

command, 371
markdown flag, 361
Messages, receive

alert users, 358
AppServiceProvider, 365
MailForNewMessage, 361, 362
Mailtrap, 360, 363
multiple events, 364
new-message blade template,

361, 362
SendMailForNewMessage,

359, 360
$subscriber property, 363
Vue, 358

Method injection, 66
middleware(), 257
Migration

database/migrations directory, 114
tests table, 114

Index

420

Model
database and eloquent, relations,

104, 105
home page

article management
application, 98

articles and tags model, 99
code listings, 100
comment methods, 101
profile model, 102
user and tags model, 101
user model, 102, 103

relations (see also Laravel model,
migrations)

comment object, 80
faker object, 92
MVC pattern, 80
users database table, 80

route (see Route model binding)
Model relations, features

ArticleController.php, 156–158
comment object, 166
show.blade.php page, 159–161
show() method, 158, 164
user’s profile page, 161–166

Model-View-Controller (MVC), 41
architecture, 7
ArticleController show($id)

method, 252
Article model, 241–244, 246
Article views, 247, 248
articles index page, 249
controller, 9
DAO, 10
framework, 10

methods, 245
ReviewController, 252, 254, 255
show.blade.php code, 250, 251
workflow, 7–9

Monolog PHP package, 16

N
Nexmo, 334
Notifications, 341
notify method, 342

O
Object interfaces, 296
Object-relational mapping (ORM), 83
Observer pattern, 342
Open-closed principle, 294

P, Q
paginate() method, 376
Passport::routes method, 390
Polymorphic relations

commentable_id column, 143
commentable_type column, 143
comment model, 151
comment table, 142, 144–146
comment table, fake data, 155
Laravelmodelrelations, 155, 156
PHPMyAdmin, 154
problem, 143
profile model, 147
user model, 147
user factory, 149, 150

PsySH, 207

INDEX

421

R
Read-eval-print-loop (REPL)

mechanism, 207
redirect() function, 167–168
Redirect methods

action method, 169
back()->withInput() method, 168
flash-data, 171, 172
redirect() helper, 168
RedirectResponse instance, 169
route method, 169

redirectTo method, 258, 260
Redirector, 169
Representational State Transfer (REST),

367–368
Request object, 172, 174
Resourceful controllers

app/HTTP/Controllers directory, 64
default set, 64
index method, 63
TaskController, 63

Route
action/controller methods, 44–48
concept, 41, 42
controller/view, creation (see

Controller class, route)
list, 44
RESTful/resourceful controllers, 43
user input/dependency injection,

65–67
route facade, 297
route() method, 275
Route model binding

custom, 79
database operation, 75
form template, 76

implicit, 78, 79
RESTful action, 77, 78

RouteServiceProvider, 174

S
Separation of concerns

composer.json file, 129
dependency injection, 132
resources/views/users/index.blade.

php code, 131
User controller, 130
UserRepositoryInterface, 129

Service container, 308
ShouldBroadcast interface, 341
show() method, 105
Single responsibility principle, 294
Slug, 79
SOLID design principle

dependency inversion, 295
interface segregation, 295
Liskov Substitution, 295
open-closed, 294
single responsibility, 294

SQLite database, 211, 212
store() method, 268, 275, 300
$subscriber property, 364

T
table() method, 246
TaskController show method, 75
Task model, 51, 75
Tinker

database handling, 207–211
PsySH, 207

toArray method, 372

Index

422

U
update() method, 173, 268, 277
up() method, 84
URI segment, 79

V
Valet, 18
Validation

ArticleController, 176
attributes, 176
bail rule, 177
create.blade.php file, 179, 180
$errors variable, 178
nullable, 178
ValidatesRequests, 175
Validator facade, 180
view template, 176

vendor:publish artisan command, 410
View pages, 42
Vue.js, 343, 392

W, X, Y, Z
Web form

form inputs (see Form inputs,
traditional way)

form tags, 181
Laravel HTML and Form packages

form fields, 184
installation, 182
providers array, 182
upload images, 185

model binding, 186, 187
Form::model method, 187
submit button, 189
text area, 189

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Laravel
	Laravel’s Flexibility
	How Laravel Works
	What Is the MVC Pattern?
	How the MVC Pattern Works

	Chapter 2: Setting Up Your Environment
	Composer
	Installing Composer Globally
	Installing Laravel Globally
	Installing Laravel Locally with Composer

	Introduction to Homestead, Valet, and Forge
	Forge: Painless PHP Servers
	Installing VirtualBox and Vagrant
	Installing Homestead Using Vagrant
	Configuring Homestead
	Shared Folders and Homestead
	Launching the Vagrant Box
	Homestead and MySQL

	How to Create a New Laravel Project

	Chapter 3: Routing, Controllers, Templates, and Views
	Route Definitions
	How to Find the Default Route Files
	Route and RESTful Controller
	How to List All Routes

	Creating Controllers, Views, and Managing Routes
	CRUD and the Seven Methods
	Models Acts as a Resource
	Models Act As Resources

	Resourceful Controllers
	The Importance of the Resourceful Controller
	How to Supplement the Resource Controller

	Getting User Input and Dependency Injection
	How a Blade Template Works with Controllers and Models
	Security in Blade
	Authentication Through Blade
	Control Structures in Blade
	Other Advantages of Blade Templates

	Chapter 4: Working with Models
	Route Model Binding: Custom and Implicit
	Implicit Route Binding
	Custom Route Binding

	Model Relations
	How Migrations Work with the Laravel Model
	Model and Faker Object
	Examining the Home Page

	Relations Between Model, Database, and Eloquent
	Creating Views to Show Relationships

	Chapter 5: Database Migration and Eloquent
	Introduction to Migration
	Introduction to Eloquent
	Introduction to Eloquent Relations
	One-to-One
	One-to-Many
	Separation of Concerns
	Many-to-Many
	Has-Many-Through
	Polymorphic Relations
	The Problem
	The Solution

	Summarizing All Relations

	Chapter 6: Handling User Data and Redirects
	How Redirect Methods Work
	What Is a Request Object?
	How Requests and Responses Work
	Introducing Validation
	Web Form Fundamentals
	Using the Laravel HTML and Form Packages
	Model Binding
	The Traditional Way of Form Inputs

	Form Request Validation

	Chapter 7: Using Tinker
	Handling a Database Using Tinker
	SQLite Is a Breeze!

	Chapter 8: Authentication, Authorization, and Middleware
	Different Authentication Methods in the Company/Project/Task Management Application
	How Auth Controller Works and What Auth Middleware Is
	Middleware, Authentication, and Authorization in One Place
	The Company App’s Model-View-Controller
	Home Page, Redirection, and Authentication
	Role of a User and Authorization

	Authorization Through the Blade Template
	Implementing Authorization Using Gates and Policies
	How Authorization Works
	How Policies Work
	Why Are Policies Needed?

	Chapter 9: Containers and Facades
	SOLID Design Principle
	Single Responsibility Principle
	The Open-Closed Principle
	Liskov Substitution Principle
	The Interface Segregation Principle
	Dependency Inversion Principle

	Interfaces and Method Injection
	Contracts vs. Facades
	How a Container Works in Laravel
	Containers and Classes

	Chapter 10: Working with the Mail Template
	Local Development
	Using Tinker to Find the Verified E-mail
	Changing the Route

	Sending E-mail and Notifications
	Sending E-mails
	How to Send Notifications

	Chapter 11: Events and Broadcasting
	What Are Events and Broadcasting?
	Setting Up Events and Broadcasting
	Creating Events
	Receiving Messages
	Autogenerating Events

	Chapter 12: Working with APIs
	What Is REST?
	Creating an API
	Working with Laravel Passport
	API Authentication

	Appendix: More New Features in Laravel 5.8

	What Is the Dump Server Feature?
	Improved artisan Command
	A Few More Additions
	Renaming the Mail Format Folder
	Changes to .env
	Changing the Look of Error Pages
	Improving Array and String Helper Functions
	Changes in Caching

	Where to Go from Here

	Index

